
SimEvents®

User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® User's Guide
© COPYRIGHT 2005–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 5.7 (Release 2019b)

Working with Entities
1

Events and Event Actions . 1-2
Create Event Actions . 1-2

Event Action Languages and Random Number Generation . . . 1-5
Guidelines for Using MATLAB as the Event Action Language

. 1-5
Generate Random Numbers with Event Actions 1-6
Parameters in Event Actions . 1-11

Generate Entities When Events Occur 1-12
Generate Entity When First Entity is Destroyed 1-12
Generate Event-Based Entities Using Data Sets 1-14

Specify Intergeneration Times for Entities 1-16
Determine Intergeneration Time . 1-16

Generate Multiple Entities at Time Zero 1-23
Build the model . 1-23

Adjust Entity Generation Times Through Feedback 1-26

Count Simultaneous Departures from a Server 1-30

Noncumulative Counting of Entities . 1-33

Working with Entity Attributes . 1-37
Attach Attributes . 1-37
Set Attributes . 1-37

Manipulate Entity Attributes . 1-40
Write Functions to Manipulate Attributes 1-40

v

Contents

Inspect Structures of Entities . 1-44
Display Entity Types . 1-44
Inspect Entities at Run Time . 1-45

Generate Entities Carrying Nested Data Structures 1-47

Model Resource Allocation Using Composite Entity Creator
block . 1-53

Replicate Entities on Multiple Paths . 1-54
Modeling Notes . 1-54

Measure Point-to-Point Delays . 1-56
Basic Example Using Timer Blocks . 1-56

Attribute Value Support . 1-61

Modeling Queues and Servers
2

Model Basic Queuing Systems . 2-2
Example of a Logical Queue . 2-2
Vary the Service Time of a Server . 2-2

Sort by Priority . 2-6
Behavior of Priority Mode of Entity Queue Block 2-6
Serving Preferred Customers First . 2-6

Task Preemption in a Multitasking Processor 2-9
Example Model for Task Preemption . 2-9
Model Behavior and Results . 2-9

Determine Whether a Queue Is Nonempty 2-12

Model Server Failure . 2-13
Server States . 2-13
Use a Gate to Implement a Failure State 2-13

vi Contents

Routing Techniques
3

Role of Paths in SimEvents Models . 3-2
Definition of Entity Paths . 3-2
Implications of Entity Paths . 3-2
Overview Blocks for Designing Paths 3-2

Route Vehicles Using an Entity Output Switch Block 3-4

Control Output Switch with Event Actions and Simulink
Function . 3-8

Control Output Switch with a Simulink Function Block 3-8
Specify an Initial Port Selection . 3-9

Match Entities Based on Attributes . 3-11

Use Attributes to Route Entities . 3-13

Role of Gates in SimEvents Models . 3-14
Overview of Gate Behavior . 3-14
Gate Behavior . 3-15

Enable a Gate for a Time Interval . 3-16
Behavior of Entity Gate Block in Enabled Mode 3-16
Sense an Entity Passing from A to B and Open a Gate 3-16
Control Joint Availability of Two Servers 3-18

Work with Resources
4

Model Using Resources . 4-2
Resource Blocks . 4-2
Resource Creation Workflow . 4-2

Set Resource Amount with Attributes . 4-4

Process Batched Entities Using Event Actions 4-6

vii

Find and Extract Entities in SimEvents Models 4-10
Finding and Examining Entities . 4-10
Extracting Found Entities . 4-15
Changing Found Entity Attributes . 4-18
Triggering Entity Find Block with Event Actions 4-19
Building a Firewall and an Email Server 4-21

Visualization, Statistics, and Animation
5

Interpret SimEvents Models Using Statistical Analysis 5-2
Output Statistics for Data Analysis . 5-2
Output Statistics for Run-Time Control 5-2
Average Queue Length and Average Store Size 5-6
Average Wait . 5-9
Number of Entities Arrived . 5-11
Number of Entities Departed . 5-11
Number of Entities Extracted . 5-12
Number of Entities in Block . 5-12
Number of Pending Entities . 5-12
Pending Entity Present in Block . 5-12
Utilization . 5-12

Visualization and Animation for Debugging 5-14
Which Debugging Tool to Use . 5-14
Observe Entities with Animation . 5-15
Explore the System Using the Simulink Simulation Stepper . 5-15
Information About Race Conditions and Random Times 5-16

Model Traffic Intersections as a Queuing Network 5-17

Optimize SimEvents Models by Running Multiple Simulations
. 5-26

Grocery Store Model . 5-26
Build the Model . 5-27
Run Multiple Simulations to Optimize Resources 5-28

Use the Sequence Viewer Block to Visualize Messages, Events,
and Entities . 5-32

Components of the Sequence Viewer Window 5-34

viii Contents

Navigate the Lifeline Hierarchy . 5-36
View State Activity and Transitions . 5-39
View Function Calls . 5-41
Simulation Time in the Sequence Viewer Window 5-41
Redisplay of Information in the Sequence Viewer Window . . 5-42

Learning More About SimEvents Software
6

Event Calendar . 6-2

Entity Priorities . 6-3

Livelock Prevention . 6-5
Large Finite Numbers of Simultaneous Events 6-5

Save SimEvents Simulation Operating Point 6-6

Example Model to Count Simultaneous Departures from a
Server . 6-12

Example Model for Noncumulative Entity Count 6-13

Example Model for Discouraged Arrival 6-14

A Simple Example of Generating Multiple Entities 6-15

A Simple Example of Event-Based Entity Generation 6-16

Serve Preferred Customers First . 6-17

Find and Examine Entities . 6-18

Extract Found Entities . 6-21

Trigger Entity Find Block with Event Actions 6-22

Build a Firewall and an Email Server 6-23

ix

Implement the Custom Entity Storage Block 6-24

Implement the Custom Entity Storage Block with Iteration
Event . 6-25

Implement the Custom Entity Storage Block with Two Timer
Events . 6-26

Implement the Custom Entity Generator Block 6-27

Implement the Custom Entity Storage Block with Two Storages
. 6-28

Use SimEvents with Simulink
7

Working with SimEvents and Simulink 7-2
Exchange Data Between SimEvents and Simulink 7-2
Time-Based Signals and SimEvents Block Transitions 7-2
SimEvents Support for Simulink Subsystems 7-2
Save Simulation Data . 7-4

Solvers for Discrete-Event Systems . 7-6
Variable-Step Solvers for Discrete-Event Systems 7-6
Fixed-Step Solvers for Discrete-Event Systems 7-7

Model Simple Order Fulfilment Using Autonomous Robots . . 7-9
Order Fulfilment Model . 7-9
Warehouse Component . 7-10
Order Queue Component . 7-15
Results . 7-16

Build Discrete-Event Systems Using Charts
8

Discrete-Event Stateflow Charts . 8-2
Why Use the Discrete-Event Chart . 8-2

x Contents

How Discrete-Event Charts Differ from Stateflow Charts 8-4
Discrete Event Chart Properties . 8-4
Define Message (Entity) Input and Output 8-5
Define Local Messages . 8-5
Specify Message Properties . 8-5

Event Triggering in Discrete-Event Charts 8-6
Event Triggering . 8-6
Message Triggering . 8-6
Temporal Triggering . 8-7

Discrete-Event Chart Precise Timing . 8-9

Trigger a Discrete-Event Chart Block on Message Arrival . . . 8-13

Dynamic Scheduling of Discrete-Event Chart Block 8-25

Build Discrete-Event Systems Using System Objects
9

Create Custom Blocks Using MATLAB Discrete-Event System
Block . 9-2

Entity Types, Ports, and Storage in a Discrete-Event System
Framework . 9-3

Events . 9-6
Implement a Discrete-Event System Object with MATLAB

Discrete-Event System Block . 9-7

Delay Entities with a Custom Entity Storage Block 9-11
Create the Discrete-Event System Object 9-11
Implementing the Custom Entity Storage Block 9-14

Create a Custom Entity Storage Block with Iteration Event
. 9-17

Create the Discrete-Event System Object 9-17
Define Custom Block Behavior . 9-19
Implement Custom Block . 9-19

xi

Custom Entity Storage Block with Multiple Timer Events . . . 9-23
Create the Discrete-Event System Object with Multiple Timer

Events . 9-23
Custom Block Behavior . 9-25
Implement Custom Block . 9-26

Custom Entity Generator Block with Signal Input 9-31
Create the Discrete-Event System Object 9-31
Custom Block Behavior . 9-33
Implement Custom Block . 9-35

Build a Custom Block with Multiple Storages 9-39
Create the Discrete-Event System Object 9-39
Custom Block Behavior . 9-42
Implement the Custom Block . 9-44

Create a Custom Resource Acquirer Block 9-49
Create the Discrete-Event System Object 9-49
Custom Block Behavior . 9-51
Implement the Custom Block . 9-51

Create a Discrete-Event System Object 9-58
Methods . 9-59
Inherited Methods from matlab.System Class 9-62
Inherited Methods from matlab.system.mixin Package 9-62
Reference and Extract Entities . 9-63

Generate Code for MATLAB Discrete-Event System Blocks . . 9-65
Migrate Existing MATLAB Discrete-Event System System object

. 9-65
Limitations of Code Generation with Discrete-Event System

Block . 9-68

Customize Discrete-Event System Behavior Using Events and
Event Actions . 9-69

Event Types and Event Actions . 9-69
Event Identifiers . 9-72

Call Simulink Function from a MATLAB Discrete-Event System
Block . 9-75

Modify Entity Attributes . 9-76
Build the Model . 9-76

xii Contents

Resource Scheduling Using MATLAB Discrete-Event System
and Data Store Memory Blocks . 9-80

Custom Visualization
10

Use SimulationObserver Class to Monitor a SimEvents Model
. 10-2

SimulationObserver Class . 10-2
Custom Visualization Workflow . 10-2
Create an Application . 10-3
Use the Observer to Monitor the Model 10-5
Stop Simulation and Disconnect the Model 10-5

Custom Visualization Example . 10-6
Structure of Example Model . 10-6
Visualize Entities . 10-6

Observe Entities Using simevents.SimulationObserver Class
. 10-8

Migrating SimEvents Models
11

Migration Considerations . 11-2
When You Should Not Migrate . 11-3

Migration Workflow . 11-4

Identify and Redefine Entity Types . 11-7

Replace Old Blocks . 11-9

Connect Signal Ports . 11-13
If Connected to Gateway Blocks . 11-13
If Using Get Attribute Blocks to Observe Output 11-13
If Connected to Computation Blocks 11-14

xiii

If Connected to Reactive Ports . 11-16

Write Event Actions for Legacy Models 11-19
Replace Set Attribute Blocks with Event Actions 11-19
Get Attribute Values . 11-20
Replace Random Number Distributions in Event Actions . . 11-21
Replace Event-Based Sequence Block with Event Actions . . 11-22
Replace Attribute Function Blocks with Event Actions 11-23
If Using Simulink Signals in an Event-Based Computation . 11-27

Observe Output . 11-29

Reactive Ports . 11-31

Troubleshoot SimEvents Models
12

Debug SimEvents Models . 12-2
Start the Debugger . 12-3
Step Through Model . 12-4

xiv Contents

Working with Entities

• “Events and Event Actions” on page 1-2
• “Event Action Languages and Random Number Generation” on page 1-5
• “Generate Entities When Events Occur” on page 1-12
• “Specify Intergeneration Times for Entities” on page 1-16
• “Generate Multiple Entities at Time Zero” on page 1-23
• “Adjust Entity Generation Times Through Feedback” on page 1-26
• “Count Simultaneous Departures from a Server” on page 1-30
• “Noncumulative Counting of Entities” on page 1-33
• “Working with Entity Attributes” on page 1-37
• “Manipulate Entity Attributes” on page 1-40
• “Inspect Structures of Entities” on page 1-44
• “Generate Entities Carrying Nested Data Structures” on page 1-47
• “Model Resource Allocation Using Composite Entity Creator block” on page 1-53
• “Replicate Entities on Multiple Paths” on page 1-54
• “Measure Point-to-Point Delays” on page 1-56
• “Attribute Value Support” on page 1-61

1

Events and Event Actions
In a discrete-event simulation, an event is an observation of an instantaneous incident
that may change a state variable, an output, and/or the occurrence of other events. You
can create event actions to occur when entities change state, for example, when an entity
exits a block. For a list of blocks and the actions they can have, see “Storage Actions”.

An event calendar tracks upcoming events for a model during a discrete-event simulation.
For more information on the event calendar, see “Event Calendar” on page 6-2.

The event actions assistant helps you create repeated sequence of event actions or
random event actions according to a statistical distribution. For more information on the
event actions assistant, see “Event Actions Assistant for Events”.

Create Event Actions
Define event actions on the Event actions tab of a block. These are the possible actions
for which you can create events.

Entity
Generator

Entity
Queue

Entity
Server

Entity
Terminator

Resource
Acquirer

Entity Batch
Creator

Entity
generation

Entity entry
to queue
block

Entity entry
to server
block

Entity entry
to terminator
block

Entity entry
to acquirer
block

Entity entry
to batch block

Entity exit
from block

Entity exit
from block

Service
completion of
entity

N/A Entity exit
from acquirer
block

Entity batch
generation

N/A Entity is
blocked

Entity exit
from block

N/A Entity is
blocked

Entity exit
from block

N/A N/A Entity is
blocked

N/A N/A Entity is
blocked

N/A N/A Entity is
preempted

N/A N/A N/A

In event actions, you can also modify entity attributes (entityName.attributeName), entity
priorities (sys.entity.priority), and entity IDs (sys.entity.id). However, you
cannot change these entity attributes or its system properties (entitySys) for exit
actions in any block. Attempting to change these values causes an error at simulation.

1 Working with Entities

1-2

The seExampleTankFilling example has two event actions defined, in the Entity
Generator and Entity Server blocks. This example recreates the event action in the Entity
Server block.

1 In a new model, from the SimEvents library, drag the Entity Server and Simulink
Function blocks.

2 In the Entity Server block:

• Click the Entity actions tab.
• To create an action on entity entry, click Entry.
• In the Entry action section, type:

startFilling(entity.Capacity);

This command calls the function, startFilling.

The ingoing line to the Entity Server block icon updates with the event action icon
({...}) indicating that the block defines an event action.

3 In the Simulink Function block:

a In Trigger Port, enter startFilling in the Function name parameter.
b Drag in an Inport block and rename it to cap.
c Rename the u input to capacity and connect it to cap.
d Remove the y output.
e Drag in a MATLAB Function block and an Outport block.
f In the MATLAB Function, enter the code:

function y = toggle()
%#codegen
persistent u

if isempty(u)
 u = -1;
end

 Events and Event Actions

1-3

if u == -1
 u = 1;
else
 u = -1;
end

y = u;
g Connect the y output of the MATLAB Function block to the Outport block and

rename the Outport block to reset.

You have now defined the startFilling function for the event action. To optionally
visualize the connection between the Entity Server block and the Simulink Function
block, in the Editor, select Display > Function Connectors.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity Gate |
Entity Generator | Entity Input Switch | Entity Multicast | Entity Output Switch | Entity
Queue | Entity Replicator | Entity Server | Entity Terminator | MATLAB Discrete Event
System | Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-12

More About
• “Entities in a SimEvents Model”
• “Role of Events in a SimEvents Model”
• “Event Action Languages and Random Number Generation” on page 1-5
• “Event Calendar” on page 6-2

1 Working with Entities

1-4

Event Action Languages and Random Number
Generation

In this section...
“Guidelines for Using MATLAB as the Event Action Language” on page 1-5
“Generate Random Numbers with Event Actions” on page 1-6
“Parameters in Event Actions” on page 1-11

You can write SimEvents actions using:

• MATLAB® code — Use MATLAB. For information on guidelines for using MATLAB code
as the event action language, see “Guidelines for Using MATLAB as the Event Action
Language” on page 1-5

• Simulink® functions — Use the Simulink Function block. The Simulink Function block
does not accept entities as input.

Guidelines for Using MATLAB as the Event Action Language
In general, using MATLAB as the SimEvents event action language follows the same rules
as the use of MATLAB in the MATLAB Function block.

• Include a type prefix for identifiers of enumerated values — The identifier
TrafficColors.Red is valid, but Red is not.

• Use the MATLAB format for comments — Use % to specify comments for consistency
with MATLAB. For example, the following comment is valid:

% This is a valid comment in the style of MATLAB

• Use one-based indexing for vectors and matrices — One-based indexing is consistent
with MATLAB syntax.

• Use parentheses instead of brackets to index into vectors and matrices — This
statement is valid:

a(2,5) = 0;

This statement is not valid:

a[2][5] = 0;

 Event Action Languages and Random Number Generation

1-5

• Persistent variable guidelines:

• Manage states that are not part of the entity structure using MATLAB persistent
variables.

• Persistent variables defined in any event action of a block are scoped to only that
action.

• Block can share persistent variables across all of its event action by managing it in
a MATLAB function on path (that is invoked from its event actions).

• Two different blocks cannot share the same persistent variable.
• Assign an initial value to local and output data — When using MATLAB as the action

language, data read without an initial value causes an error.
• Do not use parameters that are of data type cell array.

Generate Random Numbers with Event Actions
You can generate random numbers using various distributions. There are two modeling
approaches to use seeds during random number generation.

• You can use persistent variables for initializing unique seeds for each block in your
model.

• You can use coder.extrinsic() function to generate seeds without persistent
variables.

To generate these random distributions, use code in the Usage column of this table in
SimEvents blocks that support event actions or intergeneration time actions.

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox™
Product

Exponential Mean (m) -m * log(1-rand) No
Uniform Minimum (m)

Maximum (M)

m + (M-m) * rand No

1 Working with Entities

1-6

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox™
Product

Bernoulli Probability for
output to be 1 (P)

binornd(1,P) Yes

Binomial Probability of
success in a single
trial (P)

Number of trials (N)

binornd(N,P) Yes

Triangular Minimum (m)

Maximum (M)

Mode (mode)

persistent pd
if isempty(pd)
 pd = makedist('Triangular',...
 'a',m,'b',mode,'c',M)
end
random(pd)

Yes

Gamma Threshold (T)

Scale (a)

Shape (b)

gamrnd(b,a) Yes

Gaussian (normal) Mean (m)

Standard deviation
(d)

m + d*randn No

Geometric Probability of
success in a single
trial (P)

geornd(P) Yes

Poisson Mean (m) poissrnd(m) Yes
Lognormal Threshold (T)

Mu (mu)

Sigma (S)

T + lognrnd(mu,S) Yes

 Event Action Languages and Random Number Generation

1-7

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox™
Product

Log-logistic Threshold (T)

Scale (a)

persistent pd
if isempty(pd)
 pd = makedist('Loglogistic',...
 'mu',m,'sigma',S);
end
random(pd)

Yes

Beta Minimum (m)

Maximum (M)

Shape parameter a
(a)

Shape parameter b
(b)

betarnd(a,b) Yes

Discrete uniform Minimum (m)

Maximum (M)

Number of values
(N)

persistent V P
if isempty(V)
 step = (M-m)/N;
 V = m : step : M;
 P = 0 : 1/N : N;
end
r = rand;
idx = find(r < P, 1);
V(idx)

No

Weibull Threshold (T)

Scale (a)

Shape (b)

T + wblrnd(a,b) Yes

1 Working with Entities

1-8

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox™
Product

Arbitrary
continuous

Value vector (V)

Cumulative
probability function
vector (P)

r = rand;
if r == 0
 val = V(1);
else
 idx = find(r < P,1);
 val = V(idx-1) + ...
 (V(idx)-V(idx-1))*(r-P(idx-1));
end

No

Arbitrary discrete Value vector (V)

Probability vector
(P)

r = rand;
idx = find(r < cumsum(P),1);
V(idx)

No

For an example, see “Model Traffic Intersections as a Queuing Network” on page 5-17.

If you need additional random number distributions, see “Statistics and Machine Learning
Toolbox”.

Random Number Distribution with Persistent Variables

To generate random numbers, initialize a unique seed for each block in your model. If you
use a statistical pattern, you can manually change the initial seed to a unique value for
each block to generate independent samples from the distributions.

To reset the initial seed value each time a simulation starts, use MATLAB code to initialize
a persistent variable in event actions, for example:

persistent init
if isempty(init)
 rng(12234);
 init=true;
end

Here is an example code. The value vector is assigned to FinalStop:

% Set the initial seed.
persistent init

 Event Action Languages and Random Number Generation

1-9

if isempty(init)
 rng(12234);
 init=true;
end
% Create random variable, x.
x=rand();
%
% Assign values within the appropriate range
% using the cumulative probability vector.
if x < 0.3
 entity.FinalStop = 2;
elseif x >= 0.3 && x< 0.6
 entity.FinalStop = 3;
elseif x >= 0.6 && x< 0.7
 entity.FinalStop = 4;
elseif x >= 0.7 && x< 0.9
 entity.FinalStop = 5;
else
 entity.FinalStop = 6;
end

Random Number Generation with Callbacks

In some scenarios, you generate random numbers without using the persistent variables.
In this case, use coder.extrinsic() function to make sure that SimEvents is using the
function in MATLAB and a seed is defined in the base workspace of MATLAB. This may
cause performance decrease in simulation.

Consider this code as an example.

% Random number generation
coder.extrinsic('rand');
value = 1;
value = rand();
% Pattern: Exponential distribution
mu = 0.5;
dt = -1/mu * log(1 - value);

The output of the extrinsic function is an mxArray. To convert it to a known type, a
variable val = 1 is declared to set its type to double and rand is assigned to that
variable val=rand. For information about extrinsic functions, see “Working with
mxArrays” (Simulink).

For an example, see “Model Traffic Intersections as a Queuing Network” on page 5-17.

1 Working with Entities

1-10

Parameters in Event Actions
From within an event action, you can refer to these parameters:

• Mask-specific parameters you define using the Mask Editor Parameters pane.
• Any variable you define in a workspace (such as base workspace or model workspace).
• Parameters you define using the Simulink.Parameter object.

Note With SimEvents actions, you cannot:

• Modify parameters from within an event action.
• Tune parameters during simulation.
• Event actions are not supported with string entity data type.

See Also
Entity Generator | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Function | Multicast Receive Queue | Resource Acquirer | Simulink Function |
Simulink.Parameter

Related Examples
• “Generate Entities When Events Occur” on page 1-12

More About
• “Role of Events in a SimEvents Model”
• “Mask Editor Overview” (Simulink)

 See Also

1-11

Generate Entities When Events Occur
In this section...
“Generate Entity When First Entity is Destroyed” on page 1-12
“Generate Event-Based Entities Using Data Sets” on page 1-14

In addition to time-based entity generation, the Entity Generator block enables you to
generate entities in response to events that occur during the simulation. In event-based
generation, a new entity is generated whenever a message arrives at the input port of the
Entity Generator block.

Event times and the time intervals between pairs of successive entities are not
necessarily predictable in advance.

Generating entities when events occur is appropriate if you want the dynamics of your
model to determine when to generate entities.

Generate Entity When First Entity is Destroyed
To generate an entity when the first entity is destroyed, use two Entity Generator blocks
and a Simulink Function block. The Entity Terminator block calls the Simulink Function
after destroying the first entity.

To open the example, see Event-Based Entity Generation.

1 Working with Entities

1-12

In this example, Entity Generator1 generates the first entity. SendMessage contains the
genNext function, which sends a message.

The Entity Terminator block calls the genNext function.

 Generate Entities When Events Occur

1-13

Generate Event-Based Entities Using Data Sets
For an example that uses an Excel® spreadsheet, see Generating and Initializing
Entities.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity Gate |
Entity Generator | Entity Input Switch | Entity Multicast | Entity Output Switch | Entity
Queue | Entity Replicator | Entity Server | Entity Terminator | MATLAB Discrete Event
System | Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

1 Working with Entities

1-14

Related Examples
• “Specify Intergeneration Times for Entities” on page 1-16
• “Manipulate Entity Attributes” on page 1-40
• “Inspect Structures of Entities” on page 1-44
• “Generate Multiple Entities at Time Zero” on page 1-23
• “Count Simultaneous Departures from a Server” on page 1-30
• “Model Resource Allocation Using Composite Entity Creator block” on page 1-53
• “Replicate Entities on Multiple Paths” on page 1-54

More About
• “Entities in a SimEvents Model”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-61

 See Also

1-15

Specify Intergeneration Times for Entities
The intergeneration time is the time interval between successive entities that the block
generates. You can have a generation process that is:

• Periodic
• Sampled from a random distribution or time-based signal
• From custom code

For example, if the block generates entities at T = 50, T = 53, T = 60, and T = 60.1, the
corresponding intergeneration times are 3, 7, and 0.1. After each new entity departs, the
block determines the intergeneration time that represents the interval until the block
generates the next entity.

Determine Intergeneration Time
You configure the Entity Generator block by indicating criteria that it uses to determine
intergeneration times for the entities it creates. You can generate entities:

• From random distribution
• Periodically
• At arbitrary times

Use the dropdown list in the Time source parameter of the Entity Generation block to
determine intergeneration times:

• Dialog

Uses the Period parameter to periodically vary the intergeneration times.
• Signal port

Uses a signal from an external block, such as the Sine wave block, to vary the
intergeneration times.

• MATLAB action

Enables an Intergeneration time action field, in which you enter MATLAB code to
customize the intergeneration times.

1 Working with Entities

1-16

Periodically Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to Dialog.

3 In the Statistics tab of the Entity Terminator block, select the Number of entities
arrived check box.

4 Connect these blocks and simulate the model. The period is 1.

5 Vary the period to 8 and simulate the model again. Observe the change in the scope.

 Specify Intergeneration Times for Entities

1-17

Use a Signal to Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator and Entity
Terminator blocks. From the Simulink library add the Sine Wave, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to Signal port.

A new signal port appears on the Entity Generator block.
3 In the Statistics tab of the Entity Terminator block, select the Number of entities

arrived check box.
4 Double-click the Sine Wave block. By default, the first value of the Sine Wave block is

0. To add a constant value to the sine to produce the output of this block, change the
Bias parameter to another value, for example, 1.5.

5 Connect these blocks and simulate the model.

1 Working with Entities

1-18

Upon generating each entity, the Entity Generator block reads the value of the input
signal and uses that value as the time interval until the next entity generation.

Notice the capital E on the signal line from the Sine Wave block to the Entity
Generator block. This icon indicates the transition from a time-based system to a
discrete-event system.

Customize the Variation of the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to MATLAB action.

A new Intergeneration time action field appears on the Entity Generator block.
3 To customize the intergeneration times for your model, in the Intergeneration time

action field, enter MATLAB code, for example:

dt = rand();

Note For intergeneration times, you must set the fixed name, dt. You cannot set any
other variable name for this value.

4 In the Statistics tab of the Entity Terminator block, select the Number of entities
arrived check box.

 Specify Intergeneration Times for Entities

1-19

5 Connect these blocks and simulate the model.

To generate entities with exponential random arrival times, in the Intergeneration time
action field, enter MATLAB code that uses the mean function, for example:

mean = 1;
dt = -mean*log(1-rand());

1 Working with Entities

1-20

See Also
Discrete Event Chart | Entity Server | Entity Generator | Entity Queue | Entity Replicator |
Entity Terminator | MATLAB Discrete Event System

Related Examples
• “Generate Entities When Events Occur” on page 1-12
• “Manipulate Entity Attributes” on page 1-40
• “Inspect Structures of Entities” on page 1-44
• “Generate Multiple Entities at Time Zero” on page 1-23
• “Count Simultaneous Departures from a Server” on page 1-30

 See Also

1-21

• “Model Resource Allocation Using Composite Entity Creator block” on page 1-53
• “Replicate Entities on Multiple Paths” on page 1-54

More About
• “Entities in a SimEvents Model”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-61

1 Working with Entities

1-22

Generate Multiple Entities at Time Zero
In a discrete-event simulation, an event is an observation of an instantaneous incident
that may change a state variable, an output, and/or the occurrence of other events.

Suppose that you want to:

• Preload a queue or server with entities at the start of the simulation, before you
analyze queueing or processing delays.

• Initialize the capacity of a shared resource before you analyze resource allocation
behavior.

These scenarios requires multiple entity generation at the simulation start.

In these scenarios, you can simultaneously generate multiple entities at the start of the
simulation. You can then observe the behavior of only those entities for the remainder of
the simulation.

Build the model
To generate multiple entities at time 0, use MATLAB code in the Entity Generator block.

To open the example model without performing the configuration steps, see A Simple
Example of Generating Multiple Entities.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Dashboard Scope blocks.

2 Double-click the Entity Generator block.
3 From the Time source drop-down list, select MATLAB action.

 Generate Multiple Entities at Time Zero

1-23

4 In the Intergeneration time action field, use MATLAB code to enter the number of
entities that you want to generate. For example, you could use 8. In that case, at
simulation time 0, the Entity Generator block generates 8 simultaneous events.

5 In the Events action tab, randomize the entity attribute. Select the Generate event
action and, in the Generate action field, enter the MATLAB code:

entity.Attribute1=rand();

The output of the Dashboard Scope block shows that the software generates multiple
entities at time 0.

1 Working with Entities

1-24

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Generate Entities When Events Occur” on page 1-12
• “Specify Intergeneration Times for Entities” on page 1-16
• “Manipulate Entity Attributes” on page 1-40
• “Inspect Structures of Entities” on page 1-44
• “Count Simultaneous Departures from a Server” on page 1-30

More About
• “Entities in a SimEvents Model”

 See Also

1-25

Adjust Entity Generation Times Through Feedback
This example shows a queuing system in which feedback influences the arrival rate. The
goal of the feedback loop is to stabilize the entity queue by slowing the entity generation
rate of the Entity Generator block as more entities accumulate in the Entity Queue block
and the Entity Server block.

The diagram shows a simple queuing system with an Entity Generator, an Entity Queue,
an Entity Server, and an Entity Terminator block. For more information about building
this simple queuing system, see “Create a Discrete-Event Model”.

The capacity of the Entity Server block is 1. This causes an increase in the queue length
without feedback. The goal is to regulate entity intergeneration time based on the size of
the queue and the number of entities waiting to be served.

To open the example, see Example Model for Discouraged Arrival.

1 In the Entity Generator block, select MATLAB action as the Time source. Add this
code to the Intergeneration time action field.

persistent rngInit;

if isempty(rngInit)
 seed = 12345;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = getAvgInterGenTime();
dt = -mu*log(1-rand());

1 Working with Entities

1-26

The entity intergeneration time dt is generated from an exponential distribution with
mean mu, which is determined by the function getAvgInterGenTime().

2 In the Entity Queue block, in the Statistics tab, select the Number of entities in
block, n, and Average queue length, l as output statistics.

3 In the Entity Server block, select MATLAB action as the Service time source. Add
this code to the Service time action field.

persistent rngInit;
if isempty(rngInit)
 seed = 67868;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = 3;
dt = -mu*log(1-rand());

The service time dt is drawn from an exponential distribution with mean 3.
4 In the Entity Server block, in the Statistics tab, select the Number of entities in

block, n, as output statistics.
5 Add a Simulink Function block from the SimEvents library. On the Simulink Function

block, double-click the function signature and enter y = getAvgInterGenTime().
6 In the Simulink Function block:

a Add two In1 blocks and rename them as numInQueue and numInServer.

numInQueue represents the current number of entities accumulated in the
queue and numInServer represents the current number of entities accumulated
in the server.

 Adjust Entity Generation Times Through Feedback

1-27

b Add a Simulink Add block to add these two inputs.
c Add a Simulink Bias block and set the Bias parameter as 1.

The constant bias 1 is to guarantee a nonzero intergeneration time.

Optionally, select Display > Function Connections from the main menu to display
the feedback loop from the Simulink Function block to the Entity Generation block.

7 In the parent model, connect the Number of entities in block, n statistics from the
Entity Queue and Entity Server blocks to the Simulink Function block.

8 Connect a Simulink Scope block to the Average queue length, l statistic from the
Entity Queue block.

The goal is to investigate the average queue length.
9 Increase the simulation time to 10000 and simulate the model.
10 Observe that the Average queue length, l in the scope is nonincreasing due to the

effect of feedback for the discouraged entity generation rate.

1 Working with Entities

1-28

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Generate Entities When Events Occur” on page 1-12
• “Generate Multiple Entities at Time Zero” on page 1-23
• “Count Simultaneous Departures from a Server” on page 1-30
• “Replicate Entities on Multiple Paths” on page 1-54

 See Also

1-29

Count Simultaneous Departures from a Server
This example shows how to count the simultaneous departures of entities from a server.
Use the d output from the Entity Server block to learn how many entities have departed
(or arrived at) the block. The output signal also indicates when departures occurred. This
method of counting is cumulative throughout the simulation.

To open the example, see Count Simultaneous Departures.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity Server,
Entity Terminator, and Simulink Function blocks. Add a Simulink Scope block.

2 Double-click the Entity Generator block.

• In the Event actions tab, to generate random attribute values, enter:

entity.Attribute1=rand();

3 Double-click the Entity Server block. In the Main tab:

• In the Capacity parameter, enter inf.
• For the Service time parameter, select MATLAB action.
• In the Service time action parameter, enter:

dt = getServiceTime();

• In the Statistics tab, select Number of entities departed, d.
4 In the Simulink Function block, add a Repeating Sequence Stair and define the

getServiceTime function.

1 Working with Entities

1-30

5 Connect the blocks as shown and simulate the model. Observe that the scope displays
simultaneous entity departures for the corresponding time.

 Count Simultaneous Departures from a Server

1-31

See Also
Composite Entity Creator | Entity Gate | Entity Generator | Entity Multicast | Entity
Queue | Entity Server | Entity Terminator | Resource Acquirer

Related Examples
• “Generate Entities When Events Occur” on page 1-12
• “Specify Intergeneration Times for Entities” on page 1-16
• “Manipulate Entity Attributes” on page 1-40
• “Generate Multiple Entities at Time Zero” on page 1-23
• “Replicate Entities on Multiple Paths” on page 1-54

More About
• “Entities in a SimEvents Model”

1 Working with Entities

1-32

Noncumulative Counting of Entities
This example shows how to count entities, which arrive to an Entity Terminator block, in a
noncumulative way by resetting the counter at each time instant.

To open the example, see Example Model for Noncumulative Entity Count.

1 Add two Entity Generator blocks, an Entity Input Switch block, an Entity Terminator
block, and a Simulink Function block from the SimEvents library to a new model. For
more information, see Simulink Function.

2 Connect the blocks as shown in the diagram.
3 Double-click the Entity Generator1 block. In the Entity generation tab, set the

Period to 2.

In the model, 2 entities arrive to Entity Terminator block at time 0, 2, 4, 6, 8, 10 and
1 entity arrives at time 1, 3, 5, 7, 9.

4 Double-click the function signature on the Simulink Function block and enter
nonCumCount().

5 Double-click the Simulink Function block. Add a Digital Clock block from the
Simulink > Sources library. Set the Sample time parameter to -1 for inherited
sample time.

 Noncumulative Counting of Entities

1-33

6 Add a MATLAB Function block. Double-click it and enter this code.

function y = fcn(curtime)
% Define count for counting and prevtime for previous time stamp
persistent count prevtime;
% Check if prevtime is empty and initiate the count
if isempty(prevtime)
 prevtime = curtime;
 count = 0;
end
% Increase count by 1 for equal time stamps.
if isequal(curtime, prevtime)
 count = count + 1;
% Reset count to 1 if two consequitive time stamps are not identical
else
 prevtime = curtime;
 count = 1;
end
% Output count for visualization
y = count;
end

Save the file (optional).
7 Connect the output of the MATLAB Function block to a Simulink Scope block.
8 In the parent model, double-click the Entity Terminator block. In the Entry action

field of the Event actions tab, enter this code.

nonCumCount();
9 Simulate the model and open the Scope block in the Simulink Function block.
10 Change the plotting settings of the Scope block by right-clicking the plot and

selecting Style. Select no line for the Line and circle for the Marker
parameters.

11 Observe that the block illustrates the noncumulative entity count for the entities
arriving the Entity Terminator block. The block also illustrates the instantaneous
entity arrivals at each time.

1 Working with Entities

1-34

To count the number of events that occur instantaneously, use nonCumCount() in any
Event actions.

See Also
Entity Gate | Entity Generator | Entity Input Switch | Entity Terminator

Related Examples
• “Count Simultaneous Departures from a Server” on page 1-30
• “Generate Entities When Events Occur” on page 1-12
• “Specify Intergeneration Times for Entities” on page 1-16
• “Generate Multiple Entities at Time Zero” on page 1-23

 See Also

1-35

More About
• “Entities in a SimEvents Model”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-61

1 Working with Entities

1-36

Working with Entity Attributes
In this section...
“Attach Attributes” on page 1-37
“Set Attributes” on page 1-37

You can attach data to an entity using one or more attributes of the entity. Each attribute
has a name and a numeric value. You can read or change the values of attributes during
the simulation.

For example, suppose your entities represent a message that you are transmitting across
a communication network. You can attach the length of each particular message to the
message itself using an attribute named length.

You can also use attributes to specify the amount of a resource for your model. For more
information, see “Model Using Resources” on page 4-2.

Attach Attributes
To attach attributes to an entity, use the Entity Generator block. Attribute attachments
can create new attributes or change the values of existing attributes. You can attach
attributes such as:

• Constant value
• Random numbers
• Elements of either a vector in the MATLAB workspace or a vector that you can type in

a block dialog box
• Values of an output argument of a MATLAB function that you write
• Values of a signal
• Outputs of a function defined in Simulink or Stateflow® environment that you write.

Set Attributes
To build and manage the list of attributes to attach to each departing entity, use the
controls under the Define attributes section of the Entity Generator block. Each
attribute appears as a row in a table.

 Working with Entity Attributes

1-37

Using these controls, you can:

• Add an attribute manually to attach to the entity.
• Modify an attribute that you added to the table from the Available Attributes list to

attach to the entity.

The buttons under Set Attribute perform these actions.

Button Action Notes
Add a template attribute to the
table.

Rename the attribute and
specify its properties.

Remove the selected attribute
from the attribute table.

When you delete an attribute
this way, no confirmation
appears and you cannot undo
the operation.

The table displays the attributes you added manually. Use it to set these attribute
properties.

Property Specify Use
Attribute Name The name of the attribute.

Each attribute must have a
unique name.

Double-click the existing
name, and then type the new
name.

Attribute Initial Value The value to assign to the
attribute (when the attribute
comes from the dialog box).

Double-click the value, and
then type the value you want
to assign.

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-40

1 Working with Entities

1-38

More About
• “Entities in a SimEvents Model”
• “Attribute Value Support” on page 1-61
• “Model Resource Allocation Using Composite Entity Creator block” on page 1-53

 See Also

1-39

Manipulate Entity Attributes
The attributes table describes some ways that you can use data that you have attached to
an entity.

• Create a signal
• Create a plot
• Compute a different attribute value
• Help specify behavior of a block that supports the use of attribute values for block

parameters. Examples are the service time for a server and the selected port for an
output switch.

Suppose that your entity possesses an attribute with one of these quantities:

• Service time to be used by a downstream server block
• Switching criterion to be used by a downstream switch block

When an entity with one of these attribute quantities arrives at a server or switch block,
you can directly reference the attribute using an option on the server or switch block
dialog box.

Write Functions to Manipulate Attributes
To manipulate attributes using code, use the Event actions tab of a block. In this tab, you
can write MATLAB code to manipulate the attribute. To access the attribute, use the
notation entityName.attributeName. For example:

entity.Attribute1=5;

For example, you might want to manipulate the attributes for service completion.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity Server,
and Entity Terminator blocks and connect them.

1 Working with Entities

1-40

2 Double-click Entity Generator and, in the Entity type tab, add three attributes to the
attributes table.

3 In the Entity Server block, click the Event actions tab.
4 For the Service complete action, enter MATLAB code to manipulate the entity

attributes you added in the Entity Generator block. For example:

 Manipulate Entity Attributes

1-41

This code updates the Entity Server block with the event action icon.
5 To see the action, in the model, hover over the Entity Server block event action icon

block.

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

1 Working with Entities

1-42

Related Examples
• “Manipulate Entity Attributes” on page 1-40

More About
• “Entities in a SimEvents Model”
• “Working with Entity Attributes” on page 1-37
• “Attribute Value Support” on page 1-61

 See Also

1-43

Inspect Structures of Entities
You can inspect entity structures using these methods:

• On a signal line, using the Signal Hierarchy Viewer (for more information, see “Display
Entity Types” on page 1-44).

• In a block at run-time, using the Storage Inspector

Display Entity Types
To show entity types in your model, in the model editor, right-click a line and select
Signal Hierarchy. The Signal Hierarchy Viewer interactively displays about entities,
signals, and bus objects. For more information on the Signal Hierarchy Viewer, see
“Signal Hierarchy Viewer” (Simulink).

If you have configured any blocks to receive an entity structure that the preceding block
does not provide, upon compilation, the software automatically displays entity types. This
behavior helps you to troubleshoot the mismatch in entity structures before simulation.
The software displays an approximate list of the entity types and attributes. Use this as a
guideline and not as a definitive list.

If entities on two separate paths have the same structure throughout the model, you can
use the same entity type for both entity paths.

If you now modify the second Entity Generate block path to change data2 to data3, the
structure of entities on the second path becomes unique. You must specify a new entity
type name for the second Entity Generator block.

1 Working with Entities

1-44

Inspect Entities at Run Time
To inspect entities at run-time, use the Storage Inspector. Inspect entities, batched
entities, and their attribute values in a block.

1 In a SimEvents model, use the Simulink Simulation Stepper to step through the
model.

2 As you step through the model, each block with entities updates to contain a
magnifying glass.

3 To display entity details, including attributes, click the magnifying glass.

4 To see the number of entities, hover over the magnifying glass.

 Inspect Structures of Entities

1-45

Alternatively, use the SimEvents Debugger to inspect entities. For more information, see
SimEvents Debugger.

See Also
Entity Generator | SimEvents Debugger

More About
• “Entities in a SimEvents Model”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-61

1 Working with Entities

1-46

Generate Entities Carrying Nested Data Structures
This example shows how to investigate the throughput of a vehicle service facility using
Simulink Bus Editor to create nested data structures carried by entities.

The facility has three service stations represented by three Entity Server blocks. The
vehicles arriving at the facility are queued and then directed to one of the three service
stations based on their size and mileage. It is assumed that the older vehicles require
more service time.

1 Create entities that represent vehicles arriving at a service facility. The entities carry
data representing the vehicle dimensions and properties as nested bus objects.
Vehicle dimensions include vehicle height and width in meters and vehicle properties
include its age and current mileage. For more information about using the Bus Editor,
see “Create and Specify Bus Objects” (Simulink).

a Under Modeling tab, in Design section, select and open the Bus Editor.
b In the Bus Editor, select File > Add Bus.
c Create a new bus object and set the Name property to Dimensions.
d Select File > Add/Insert BusElement to create two bus elements, Height and

Width.

 Generate Entities Carrying Nested Data Structures

1-47

e Create another bus object and set the Name property to Properties. Add three
bus elements Station, Year, and Mileage.

f Create another bus object and set the Name property to Vehicle.
g Add two bus elements and set their Name properties to VehicleDimensions

and VehicleProperties. For their Data type properties, use the Bus:
<object name> template, replacing <object name> with Dimensions and
Properties.

2 Add an Entity Generator block. Double-click the Entity Generator block.

a Select the Entity type tab. Set the Entity type to Bus object and Entity type
name as Vehicle.

Vehicle is the bus object created by the Bus Editor.
b Select the Event actions tab. In the Generate action field, enter:

% Vehicle Dimensions
entity.VehicleDimensions.Height = 1+rand();

1 Working with Entities

1-48

entity.VehicleDimensions.Width = 1+rand();
% Vehicle Properties
entity.VehicleProperties.Year = randi([1996 2018]);
entity.VehicleProperties.Mileage = randi([50000 150000]);

The vehicles arrive at the facility with random dimensions and properties.
3 Add an Entity Queue block and rename it Vehicle Queue.

a In the 'Main tab, set the Capacity to Inf.
b Select the Event actions tab. In the Entry action field, enter this code to

specify service station selection for vehicles.
% If the height and width of the vehicle are greater than 1.5 m, select Station 1.
if entity.VehicleDimensions.Width > 1.5 && entity.VehicleDimensions.Height > 1.5
 entity.VehicleProperties.Station = 1;
% Else, if the vehicle's mileage is greater than 90000 km, select Station 2.
else if entity.VehicleProperties.Mileage > 90000
 entity.VehicleProperties.Station = 2;
% If the vehicle's mileage is less than 90000 km, select Station 3.
else
 entity.VehicleProperties.Station = 3;
end
end

The vehicles are queued to be directed to the correct service station and vehicle
dimensions and properties are used to select the appropriate service station.

4 Add an Entity Output Switch block.

a Set the Number of output ports to 3.
b Set the Switching criterion to From attribute.
c Set the Switch attribute name to VehicleProperties.Station.

The Entity Output Switch block directs the vehicles to the stations based on the
specified Station attribute.

5 Add an Entity Server block that represents the service station. Rename the block
Service Station 1.

a In the Main tab, set the Service time source to MATLAB action.
b In the Service time action field, enter:

if entity.VehicleProperties.Year > 2015
 dt = 1;
else
 dt = 5;
end

 Generate Entities Carrying Nested Data Structures

1-49

It is assumed that the vehicle service time is longer for older vehicles.
c In the Statistics tab, select Number of entities departed, d statistic and

connect it to a scope.
6 Connect Service Station 1 to an Entity Terminator block.
7 Follow the same steps to create Service Station 2 and Service Station 3 and connect

them as shown.
8 Increase the simulation time to 100 and run the simulation.

Observe the number of vehicles served at Service Station 1.

Observe the number of vehicles served at Service Station 2.

1 Working with Entities

1-50

Observe the number of vehicles served at Service Station 3.

 Generate Entities Carrying Nested Data Structures

1-51

See Also
Entity Generator | Entity Output Switch | Entity Queue | Entity Server

More About
• “Entities in a SimEvents Model”
• “Adjust Entity Generation Times Through Feedback” on page 1-26
• “Generate Entities When Events Occur” on page 1-12
• “Inspect Structures of Entities” on page 1-44

1 Working with Entities

1-52

Model Resource Allocation Using Composite Entity
Creator block

The goal of this example is to show how to use Composite Entity Creator block for
resource allocation. You can combine entities from different paths using the Composite
Entity Creator block. The entities that you combine, called composite entities, might
represent different parts within a larger item, such as the header, payload, and trailer
that are parts of a data packet. Alternatively, you can model resource allocation by
combining an entity that represents a resource with an entity that represents a part or
other item.

The Composite Entity Creator block detects when all necessary component entities are
present and when the composite entity that results from the combining operation will be
able to advance to the next block. The Composite Entity Creator block provides options
for managing information (attributes and timers) associated with the component entities.
You can also configure the Composite Entity Creator block to make the combining
operation reversible via the Composite Entity Splitter block.

See Also
Composite Entity Creator | Composite Entity Splitter | Entity Generator

More About
• “Entities in a SimEvents Model”

 Model Resource Allocation Using Composite Entity Creator block

1-53

Replicate Entities on Multiple Paths
The Entity Replicator block enables you to distribute copies of an entity on multiple entity
paths. Replicating entities might be a requirement of the situation you are modeling. For
example, copies of messages in a multicasting communication system can advance to
multiple transmitters or multiple recipients.

Similarly, copies of computer jobs can advance to multiple computers in a cluster so that
the jobs can be processed in parallel on different platforms.

In some cases, replicating entities is a convenient modeling construct.

Modeling Notes
• Unlike the Entity Output Switch block, the Entity Replicator block has departures at

all of its entity output ports that are not blocked, not just a single selected entity
output port.

• If your model routes the replicates such that they use a common entity path, then be
aware that blockages can occur during the replication process. For example, if you
have this scenario:

• An Entity Replicator block has the Replicas depart from parameter set to
Separate output ports.

• The block has these output ports connected to individual Entity Server blocks.

A blockage can occur because the servers can accommodate at most one of the
replicates at a time. The blockage causes fewer than the maximum number of
replicates to depart from the block.

• Each time the Entity Replicator block replicates an entity, the copies depart in a
sequence whose start is determined by the Hold original entity until all replicas
depart parameter. Although all copies depart at the same time instant, the sequence
might be significant in some modeling situations. For details, see the reference page
for the Entity Replicator block.

See Also
Entity Generator | Entity Replicator

1 Working with Entities

1-54

More About
• “Entities in a SimEvents Model”

 See Also

1-55

Measure Point-to-Point Delays
Determine how long each entity takes to advance from one block to another, or how much
time each entity spends in a particular region of your model. To compute these durations,
you can measure time durations on each entity that reaches a particular spot in the
model. A general workflow is:

1 Create an attribute on the entity that can hold the time value.
2 When the entity reaches a particular point in the model, set the current value of time

on the attribute. Call a Simulink function that contains a Digital Clock block.
3 When the entity reaches the destination, compute the time interval by passing the

attribute value to another Simulink function that compares it to the current
simulation time.

Basic Example Using Timer Blocks
This example lets you see if a FIFO order or prioritized queue for customers results in a
shorter wait time. The startTimer and readTimer Simulink functions jointly perform
the timing computation. This example uses the Mean block from the DSP System
Toolbox™ to calculate average times.

1 Working with Entities

1-56

This example has four Simulink Function blocks. Two define timer functions, startTimer
and readTimer. The other functions calculate average times.

1 In a new model, drag the blocks shown in the example and relabel and connect them
as shown.

2 For the startTimer block, define:

3 For the readTimer block, define:

4 For the avg_time_fifo(t) and avg_time_prioritySimulink Function blocks,
insert a Mean block, for example:

 Measure Point-to-Point Delays

1-57

5 For the Entity Generator block:

a In the Entity type tab, add two attributes, ServiceTime and Timer.
b In the Entity actions tab, set the two attribute values:

entity.ServiceTime = exprnd(3);
entitySys.priority = randi(2);

6 In Entity Queue:

a In the Main tab, set Queue type to FIFO.
b In the Event actions tab, call the startTimer function for the Entry action:

entity.Timer = startTimer();
7 In Entity Queue1:

a In the Main tab, configure the block to be a priority queue with a priority source
of entitySys.priority:

1 Working with Entities

1-58

b In the Event actions tab, call the startTimer function for the Entry action:

entity.Timer = startTimer();
8 For both Entity Server blocks:

a Set Service time source to Attribute.
b Set Service time attribute name to ServiceTime.

9 For Entity Terminator, call the readTimer and avg_time_fifo functions for the
Entry event:

% Read timer
elapsedTime = readTimer(entity.Timer);

 Measure Point-to-Point Delays

1-59

% Compute average
avg_time_fifo(elapsedTime);

10 For Entity Terminator1, call the readTimer and avg_time_priority functions for
Entry event:

% Read timer
elapsedTime = readTimer(entity.Timer);

% Compute average
avg_time_priority(elapsedTime);

11 Save and run the model.

See Also
Entity Generator | Entity Replicator | Simulink Function

More About
• “Entities in a SimEvents Model”

1 Working with Entities

1-60

Attribute Value Support
These lists summarize the characteristics of attribute values for structured entity types.

Permitted Characteristics of Attribute Values

• Real or complex
• Array of any dimension, where the dimensions remain fixed throughout the simulation
• All built-in data types (double, single, int8, uint8, int16, uint16, int32, and

uint32)
• Enumerations

For a given attribute, the characteristics of the value must be consistent throughout the
discrete-event system in the model.

Not Permitted as Attribute Values

• Structure
• Bus
• Variable-size signals or variable-size arrays
• Frame

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-40

More About
• “Entities in a SimEvents Model”
• “Working with Entity Attributes” on page 1-37

 Attribute Value Support

1-61

Modeling Queues and Servers

• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-9
• “Determine Whether a Queue Is Nonempty” on page 2-12
• “Model Server Failure” on page 2-13

2

Model Basic Queuing Systems
In this section...
“Example of a Logical Queue” on page 2-2
“Vary the Service Time of a Server” on page 2-2

Example of a Logical Queue
Suppose that you are modeling a queue that can physically hold 100 entities and you want
to determine what proportion of the time the queue length exceeds 10. You can model the
long queue as a pair of shorter queues connected in series. The shorter queues have
length 90 and 10.

Although the division of the long queue into two shorter queues has no basis in physical
reality, it enables you to gather statistics related to one of the shorter queues. In
particular, you can view the queue length (n) of the queue having length 90. If the signal
is positive over a nonzero time interval, then the length-90 queue contains an entity that
cannot advance to the length-10 queue. This means that the length-10 queue is full. As a
result, the physical length-100 queue contains more than 10 items. Determining the
proportion of time the physical queue length exceeds 10 is equivalent to determining the
proportion of time the queue length signal of the logical length-90 queue exceeds 0.

Vary the Service Time of a Server
You can vary the service time of a server using one of the following methods:

• Constant source, where you vary the constant
• Randomized source
• Arbitrary source
• Time-based source

Use the Service time source parameter of the Entity Server block to apply these
methods. You can select from:

• Dialog

Enter the constant value in the Service time value parameter.

2 Modeling Queues and Servers

2-2

• Signal port

Connect a time source to the resulting signal port.
• Attribute

Enter the name of the attribute that contains data to be interpreted as service.
• MATLAB action

In the Service time action section, enter MATLAB code to vary the service time.
Assign the variable dt, which the model uses as service time.

Random Service Times

This example is a simple queuing system in which entities arrive at a fixed deterministic
rate. They then wait in a queue and advance to a server that services the entities at
random intervals. It illustrates use of the Service time from random distribution
design pattern.

1 In a new model, drag the blocks shown in the example and relabel and connect them
as shown. For convenience, start with the Service time from random
distribution design pattern

2 To generate entities every .5 seconds, in the Entity Generator block:

a In the Entity Generation tab, change the Period to .5.
b In the Statistics tab, select Number of entities departed, d.

3 In the Entity Queue block, select Number of entities in block, n.
4 In the Entity Server block:

 Model Basic Queuing Systems

2-3

a Verify that the server is configured for random service time. If not, copy the
Server block from the Service time from random distribution design
pattern.

b In the Statistics tab, select Number of entities in block, n.
5 In the Entity Terminator block, in the Statistics tab, select Number of entities

arrived, a.
6 Save and run the model. In particular, observe the pattern of the entities leaving the

Entity Generator block and the entities at random service times.

See Also
Entity Queue | Entity Server

Related Examples
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-9
• “Determine Whether a Queue Is Nonempty” on page 2-12

2 Modeling Queues and Servers

2-4

• “Model Server Failure” on page 2-13

More About
• “Storage with Queues and Servers”

 See Also

2-5

Sort by Priority
In this section...
“Behavior of Priority Mode of Entity Queue Block” on page 2-6
“Serving Preferred Customers First” on page 2-6

This example shows how to investigate the time required to serve customers in a priority
queue.

Behavior of Priority Mode of Entity Queue Block
The Priority mode of the Entity Queue block supports queuing in which entities
positions in the queue are based primarily on specific attribute values. Arrival times are
relevant only when attribute values are equal. You specify the attribute and the sorting
direction using the Priority source and Sorting direction parameters in the block
dialog box.

Serving Preferred Customers First
In this example, two types of customers enter a queuing system. One type, considered to
be preferred customers, are less common but require longer service. The priority queue
places preferred customers ahead of nonpreferred customers. The model plots the
average system time for the set of preferred customers and separately for the set of
nonpreferred customers in a Dashboard Scope block.

2 Modeling Queues and Servers

2-6

To open the example, see Sort by Priority Example.

You can see from the plots that despite the shorter service time, the average system time
for the nonpreferred customers is much longer than the average system time for the
preferred customers.

Comparison with Unsorted Behavior

If the queue used a FIFO discipline for all customers instead of a priority sorting, then the
average system time would decrease slightly for the nonpreferred customers and increase
markedly for the preferred customers.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Task Preemption in a Multitasking Processor” on page 2-9
• “Determine Whether a Queue Is Nonempty” on page 2-12
• “Model Server Failure” on page 2-13

 See Also

2-7

More About
• “Storage with Queues and Servers”

2 Modeling Queues and Servers

2-8

Task Preemption in a Multitasking Processor
This example shows how to force service completion in an Entity Server block using
functionality available on the block Preemption tab.

Example Model for Task Preemption
The example shows preemption(replacement) of low priority tasks by a high priority task
in a multitasking processor. In the model, the Entity Server block represents the task
processor presented with a capacity to process multiple concurrent tasks.

Model Behavior and Results
The following graphic shows how the model generates both low and high priority tasks.

• The top and bottom Entity Generator randomly generate entities that represent high
and low priority tasks, respectively. Both blocks use the exprnd function to generate

 Task Preemption in a Multitasking Processor

2-9

random entities. The top block uses exprnd(3), the bottom uses exprnd(1), which
requires the Statistics and Machine Learning Toolbox license.

• The Entity Input Switch block merges the paths of the new low priority tasks with
previously preempted tasks that are returning from the task processor (server).

• The Simulink Function block runs the getCurrentTime function to start a timer on
the low priority tasks. When preemption occurs, a downstream Simulink Function
block determines the remaining service time of the preempted tasks.

• The Entity Output Switch block merges the paths of the high and low priority tasks.
Tasks on the merged path proceed for processing.

An Entity Server block represents a multitasking processor with capacity for multiple
tasks.

When preemption occurs, causing the Entity Server block to complete immediately
service of all low priority tasks, one of the two Simulink Function blocks calculates the
elapsed time of each departing task using the recordPreferredWaitTimes and
recordNonPreferredWaitTimes functions. The two Entity Terminator blocks calls
these Simulink Function to calculate the elapsed times.

If the elapsed time of a departing task is less than the service time of the Entity Server
block, meaning that preemption forced the task to depart the server early, the Output
Switch block feeds the task back to reenter the server. If the elapsed time in the Simulink
Function getCurrentTime block is equal to the service time of the Entity Server block,
the server has completed the full service time on the task. The entity terminates in the
Entity Terminator block.

The Dashboard Scope block shows the simulation results.

2 Modeling Queues and Servers

2-10

The plot displays wait time for high an low priority tasks. It can be observed that wait
time of high priority tasks is significantly decreased.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Determine Whether a Queue Is Nonempty” on page 2-12
• “Model Server Failure” on page 2-13

More About
• “Storage with Queues and Servers”

 See Also

2-11

Determine Whether a Queue Is Nonempty
To determine whether a queue is storing any entities, use this technique:

1 Enable the n output signal from the queue block. In the block dialog box, on the
Statistics tab, select the Number of entities in block, n check box.

2 From the Sinks library in the Simulink library set, insert a Scope block into the
model. Connect the n output port of the queue block to the input port of the Scope
block.

The scope shows if the queue is empty.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-9
• “Model Server Failure” on page 2-13

More About
• “Storage with Queues and Servers”

2 Modeling Queues and Servers

2-12

Model Server Failure
In this section...
“Server States” on page 2-13
“Use a Gate to Implement a Failure State” on page 2-13

Server States
In some applications, it is useful to model situations in which a server fails. For example,
a machine breaks down and later is repaired, or a network connection fails and later is
restored. This section explores ways to model failure of a server, and server states.

Server blocks do not have built-in states, so you can design states in any way that is
appropriate for your application. Some examples of possible server states are in this
table.

Server as Communication
Channel

Server as Machine Server as Human
Processor

Transmitting message Processing part Working
Connected but idle Waiting for new part to

arrive
Waiting for work

Unconnected Off Off duty
Holding message (pending
availability of destination)

Holding part (pending
availability of next operator)

Waiting for resource

Establishing connection Warming up Preparing to begin work

Use a Gate to Implement a Failure State
For any state that represents a server inability or refusal to accept entity arrivals even
though the server is not necessarily full, a common implementation involves an Entity
Gate block preceding the server.

The gate prevents entity access to the server whenever the gate control message at the
input port at the top of the block carries zero or negative values. The logic that creates
the control message determines whether the server is in a failure state. You can
implement such logic using the Simulink Function block, using a Message Send block, or
using Stateflow® charts to transition among a finite number of server states.

 Model Server Failure

2-13

This example shows an instance in which an Entity Gate block precedes a server. The
example is not specifically about a failure state, but the idea of controlling access to a
server is similar. It models a stochastically occurring failure that lasts for some amount of
time.

Note: The gate prevents new entities from arriving at the server but does not prevent the
current entity from completing its service. If you want to eject the current entity from the
server upon a failure occurrence, then you can use the preemption feature of the server
to replace the current entity with a high-priority 'placeholder' entity.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-9
• “Determine Whether a Queue Is Nonempty” on page 2-12

2 Modeling Queues and Servers

2-14

More About
• “Storage with Queues and Servers”

 See Also

2-15

Routing Techniques

• “Role of Paths in SimEvents Models” on page 3-2
• “Route Vehicles Using an Entity Output Switch Block” on page 3-4
• “Control Output Switch with Event Actions and Simulink Function” on page 3-8
• “Match Entities Based on Attributes” on page 3-11
• “Use Attributes to Route Entities” on page 3-13
• “Role of Gates in SimEvents Models” on page 3-14
• “Enable a Gate for a Time Interval” on page 3-16

3

Role of Paths in SimEvents Models

In this section...
“Definition of Entity Paths” on page 3-2
“Implications of Entity Paths” on page 3-2
“Overview Blocks for Designing Paths” on page 3-2

Definition of Entity Paths
An entity path is a connection from an entity output port to an entity input port, depicted
as a line connecting the entity ports of two SimEvents blocks. An entity path represents
the equivalence between an entity's departure from the first block and arrival at the
second block. For example, any entity that departs from the output port of an Entity
Queue block set to FIFO mode equivalently arrives at an Entity Server block input port.

The existence of the entity path does not guarantee that any entity actually uses the path;
for example, the simulation could be so short that no entities are ever generated. Even
when an entity path is used, it is used only at a discrete set of times during the
simulation.

Implications of Entity Paths
In some models, you can use the entity connection lines to infer the full sequence of
blocks that a given entity arrives at, throughout the simulation.

In many discrete-event models, however, the set of entity connection lines does not
completely determine the sequence of blocks that each entity arrives at.

By looking at entity connection lines alone, you cannot tell which queue block's input port
an entity will arrive at. Instead, you need to know more about how the Entity Output
Switch block behaves and you might even need to know the outcome of certain run-time
decisions.

Overview Blocks for Designing Paths
You design entity paths by choosing or combining entity paths using these blocks:

3 Routing Techniques

3-2

• Entity Input Switch
• Entity Output Switch
• Entity Replicator

These blocks have extra entity ports that let you vary the model's topology (that is, the set
of blocks and connection lines).

Typical reasons for manipulating entity paths are

• To describe an inherently parallel behavior in the situation you are modeling — for
example, a computer cluster with two computers that share the computing load. You
can use the Entity Output Switch block to send computing jobs to one of the two
computers. You might also use the Entity Input Switch block if computing jobs share a
common destination following the pair of computers.

• To design nonlinear topologies, such as feedback loops — for example, repeating an
operation if quality criteria such as quality of service (QoS) are not met. You can use
the Entity Input Switch block to combine the paths of new entities and entities that
require a repeated operation.

• To incorporate logical decision making into your simulation — for example,
determining scheduling protocols. You might use the Entity Input Switch block to
determine which of several queues receives attention from a server.

Other blocks in the SimEvents library have secondary features, such as preemption from
a server, that give you opportunities to design paths.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-8
• “Enable a Gate for a Time Interval” on page 3-16

More About
• “Use Attributes to Route Entities” on page 3-13
• “Role of Gates in SimEvents Models” on page 3-14

 See Also

3-3

Route Vehicles Using an Entity Output Switch Block
This example shows how to route vehicles to two different pumps in a gas station by
controlling an Entity Output Switch block.

In the example, vehicles are generated by an Entity Generator block, which represents
vehicle arrival. After their arrival, vehicles are routed to two different gas pumps using an
Entity Output Switch block. A Simulink Function block controls the selected output port
of the Entity Output Switch block. The vehicle's departure from the Entity Generator
block invokes the Simulink Function block.

Control Entity Output Switch Block

• In the Entity Output Switch Block, set the Switching Criterion to From control
port.

• In the Simulink Function block, use a Uniform Random Number block to generate
random numbers between 1 and 2.

3 Routing Techniques

3-4

• The generated random number is rounded to the integers 1 or 2 by the Round block.

• The integer value of the signal is converted to a message by the Message Send block.

• The output value from the Simulink Function block corresponds to the selected output
of the Entity Output Switch block.

Simulate Model and Review Results

Simulate the model and observe that 14 vehicles use Gas Pump1 and 16 vehicles use Gas
Pump2.

 Route Vehicles Using an Entity Output Switch Block

3-5

3 Routing Techniques

3-6

See Also
Entity Server | Entity Terminator | Entity Generator | Entity Output Switch

More About
• “Control Output Switch with Event Actions and Simulink Function” on page 3-8
• “Match Entities Based on Attributes” on page 3-11

 See Also

3-7

Control Output Switch with Event Actions and Simulink
Function

In this section...
“Control Output Switch with a Simulink Function Block” on page 3-8
“Specify an Initial Port Selection” on page 3-9

This example shows how to change the selected output port of an Entity Output Switch
block to route entities along different paths where a path is selected on a per-entity basis,
not on a predetermined time schedule.

Control Output Switch with a Simulink Function Block
The following example illustrates a scenario in which the Entity Output Switch block is
controlled by the Simulink Function block.

1 Double-click the function signature on the Simulink Function block and enter
SwitchCtrl().

2 Double-click the Simulink Function block. Add a Repeating Sequence Stair block, and
set its Sample time parameter to -1 (inherited), a Message Send block and an Out1
block. Connect the blocks as shown.

3 Routing Techniques

3-8

3 In the Repeating Sequence Stair block, set the Vector of output values to [3 2 1].

When the Simulink Function block executes, it outputs the next number from a
repeating sequence and Message Send block outputs message values 3, 2, or 1 based
on the sequence of values specified in the Repeating Sequence Stair block.

4 In the Entity Server block, in the Exit action field enter this code.

SwitchCtrl();

When service in the Entity Server block is complete, the entity exits the block and
advances to the Entity Output Switch block. The departure of the entity from the Entity
Server block calls the SwitchCtrl() function which activates the Simulink Function
block. Then the output message of the Simulink Function block determines which output
port the entity uses when it departs the Entity Output Switch block.

Specify an Initial Port Selection
When the Entity Output Switch block uses an input message, the block might attempt to
use the message before its first sample time hit. If the initial value of the message is out
of range (for example, it is unavailable). You should then specify the initial port selection
in the Entity Output Switch block's dialog box. To achieve this, you can follow these steps.

1 In the Entity Output Switch, select From control port as the Switching
criterion.

2 Set Initial port selection to the desired initial port. The value must be an integer
between 1 and Number of output ports. The Entity Output Switch block uses
Initial port selection until the first control port message arrives.

 Control Output Switch with Event Actions and Simulink Function

3-9

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Enable a Gate for a Time Interval” on page 3-16

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-13
• “Role of Gates in SimEvents Models” on page 3-14

3 Routing Techniques

3-10

Match Entities Based on Attributes
This example shows how to build a model to store and match entities representing bicycle
components. The model uses an Entity Store block for storage and an Entity Selector
block to match a set of bicycle wheels to the corresponding size frame for assembly.

Produce Bicycle Frames and Wheels

Suppose that you are modeling an assembly line that produces bicycles sized small,
medium, and large. Each bicycle is manufactured by matching the set of wheels to the
corresponding size frame. The wheels are produced at a facility. The frames are ordered
from a supplier and they arrive at the facility ready to assemble. Given this arrangement,
frame arrival rate is slower than the wheel production rate, and the set of wheels are
stored in a bin.

In the model:

• The Bicycle Frame Block generates Frame with Period 5 to represent slow arrival
rate of bicycle frames. A Frame can be of size 1, 2, or 3, and each Frame carries an
attribute FrameSize that represents its size.

• The Raw Wheel Material Block generates Wheel with Period 1. Each Wheel carries a
WheelSize attribute that represents the size of each generated wheel. The initial
value of WheelSize is set to 0.

• In the Produce Wheels with Various Size block, wheels are set to size 1, 2, or 3.

• The Entity Store block is named Store Wheels in a Bin and it stores the processed
wheels.

 Match Entities Based on Attributes

3-11

• The Entity Selector block is named Match Wheels to Frames and it matches
'WheelSize' to the corresponding 'FrameSize'.

Simulate the Model and Review Results

Simulate the model. Open the Simulation Data Inspector. Observe that, for the bicycle
assembly, the size of the set of wheels and the frames are exactly matched by the Entity
Selector block. Although the wheels are generated faster, they are stored in the Entity
Store block, and they wait to be matched to the arriving frames for assembly.

See Also
Composite Entity Creator | Entity Selector | Entity Store | Entity Gate | Entity Server

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-8
• “Enable a Gate for a Time Interval” on page 3-16

More About
• “Working with Entity Attributes” on page 1-37
• “Role of Paths in SimEvents Models” on page 3-2
• “Role of Gates in SimEvents Models” on page 3-14

3 Routing Techniques

3-12

Use Attributes to Route Entities
Suppose entities represent manufactured items that undergo a quality control process
followed by a packaging process. Items that pass the quality control test proceed to one
of three packaging stations, while items that fail the quality control test proceed to one of
two rework stations. You can model the decision making using these switches:

• An Entity Output Switch block that routes items based on an attribute that stores the
results of the quality control test

• An Entity Output Switch block that routes passing-quality items to the packaging
stations

• An Entity Output Switch block that routes failing-quality items to the rework stations

You can use the block Switching criterion parameter From attribute option to use an
attribute to select the output port. For an example, see “Model Traffic Intersections as a
Queuing Network” on page 5-17.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-8
• “Enable a Gate for a Time Interval” on page 3-16

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Role of Gates in SimEvents Models” on page 3-14

 Use Attributes to Route Entities

3-13

Role of Gates in SimEvents Models

In this section...
“Overview of Gate Behavior” on page 3-14
“Gate Behavior” on page 3-15

Overview of Gate Behavior
By design, certain blocks change their availability to arriving entities depending on the
circumstances. For example,

• A queue or server accepts arriving entities as long as it is not already full to capacity.
• An input switch accepts an arriving entity through a single selected entity input port

but forbids arrivals through other entity input ports.

Some applications require more control over whether and when entities advance from
one block to the next. A gate provides flexible control via its changing status as either
open or closed: by definition, an open gate permits entity arrivals as long as the entities
would be able to advance immediately to the next block, while a closed gate forbids entity
arrivals. You configure the gate so that it opens and closes under circumstances that are
meaningful in your model.

For example, you might use a gate

• To create periods of unavailability of a server. For example, you might be simulating a
manufacturing scenario over a month long period, where a server represents a
machine that runs only 10 hours per day. An enabled gate can precede the server, to
make the server's availability contingent upon the time.

• To make departures from one queue contingent upon departures from a second queue.
A release gate can follow the first queue. The gate's control input determines when the
gate opens, based on decreases in the number of entities in the second queue.

• With the First port that is not blocked mode of the Entity Output Switch
block. Suppose each entity output port of the switch block is followed by a gate block.
An entity attempts to advance via the first gate; if it is closed, then the entity attempts
to advance via the second gate, and so on.

3 Routing Techniques

3-14

Gate Behavior
The Entity Gate block offers these fundamentally different kinds of gate behavior:

• The enabled gate, which uses a control port to determine time intervals over which the
gate is open or closed

• The release gate, which uses a control port to determine a discrete set of times at
which the gate is instantaneously open. The gate is closed at all other times during the
simulation.

Tip Many models follow a gate with a storage block, such as a queue or server.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-8
• “Enable a Gate for a Time Interval” on page 3-16

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-13

 See Also

3-15

Enable a Gate for a Time Interval

In this section...
“Behavior of Entity Gate Block in Enabled Mode” on page 3-16
“Sense an Entity Passing from A to B and Open a Gate” on page 3-16
“Control Joint Availability of Two Servers” on page 3-18

Behavior of Entity Gate Block in Enabled Mode
The Entity Gate block uses a control signal at the input port at the top of the block to
determine when the gate is open or closed:

• When an entity with a positive payload arrives at the enable port at the top of the
block, the gate is open and an entity can arrive as long as it would be able to advance
immediately to the next block.

• When an entity with zero or negative payload arrives at the enable port at the top of
the block, the gate is closed and no entity can arrive.

Because that incoming signal can remain positive for a time interval of arbitrary length,
an enabled gate can remain open for a time interval of arbitrary length. The length can be
zero or a positive number.

Depending on your application, the gating logic can arise from time-driven dynamics,
state-driven dynamics, a SimEvents block's statistical output signal, or a computation
involving various types of signals. To see the ready-to-use common design patters
including the Entity gate block, see “SimEvents Common Design Patterns”.

Sense an Entity Passing from A to B and Open a Gate
This example shows how to use the Sense an Entity Passing from A to B and
Open a Gate design pattern. In this example, the Step block generates a step signal at
time 4. This signal passes through the Message Send block A. The Entity Replicator block
duplicates the entity and passes it to B. It uses the original entity to trigger an event-
based entity to enable the Entity Gate block.

3 Routing Techniques

3-16

1 In a new model, drag the blocks shown in the example and relabel and connect them
as shown. For convenience, start with the Sense an Entity Passing from A to
B and Open a Gate design pattern.

2 In the Step block, set the Step time parameter to 4.
3 In the A (Message Send) block, select the Show enable port check box. Selecting

this check box lets the Step block signal enable the A block to send a message to the
Entity Replicator block.

4 In the Entity Generatorblock, in the Entity type tab:

a Name the entity type Entity.
b Add an attribute named Capacity with an initial value of 0.

5 In the Entity Queue block, in the Statistics tab, select Number of entities in
block, n.

6 Save and run the model. Observe the number of entities passing through the gate and
the number of entities in the queue at time 4.

 Enable a Gate for a Time Interval

3-17

Control Joint Availability of Two Servers
Suppose that each entity undergoes two processes, one at a time, and that the first
process does not start if the second process is still in progress for the previous entity.
Assume for this example that it is preferable to model the two processes using two Single
Server blocks in series rather than one Single Server block whose service time is the sum
of the two individual processing times; for example, you might find a two-block solution
more intuitive or you might want to access the two Single Server blocks' utilization output
signals independently in another part of the model.

If you connect a queue, a server, and another server in series, then the first server can
start serving a new entity while the second server is still serving the previous entity. This

3 Routing Techniques

3-18

does not accomplish the stated goal. The model needs a gate to prevent the first server
from accepting an entity too soon, that is, while the second server still holds the previous
entity.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator | Message
Send

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-8

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-13
• “Role of Gates in SimEvents Models” on page 3-14

 See Also

3-19

Work with Resources

• “Model Using Resources” on page 4-2
• “Set Resource Amount with Attributes” on page 4-4
• “Process Batched Entities Using Event Actions” on page 4-6
• “Find and Extract Entities in SimEvents Models” on page 4-10

4

Model Using Resources
In this section...
“Resource Blocks” on page 4-2
“Resource Creation Workflow” on page 4-2

Resource Blocks
Resources are commodities shared by entities in your model. They are independent of
entities and attributes, and can exist in the model even if no entity exists or uses them.
Resources are different from attributes, which are associated with entities and exist or
disappear with their entity.

For example, if you are modeling a restaurant, you can create tables and food as
resources for customer entities. Entities can access resources from types of resources.

The SimEvents software supplies the following resource allocation blocks:

Action Block
Acquire resource Resource Acquirer
Define resource Resource Pool
Release resource Resource Releaser

Resource Creation Workflow
1 Specify resources using the Resource Pool block. Define one resource per Resource

Pool block. Multiple Resource Pool blocks can exist in the model with multiple entities
sharing the resources.

2 Identify resources to be used with the Resource Acquirer block. You can identify
these resources before specifying them in a Resource Pool block, or select them from
the available resources list. However, the resource definitions must exist by the time
you simulate the model. Multiple Resource Acquire blocks can exist in the model.

3 To release resources, include one or more Resource Releaser blocks. You can
configure Resource Release blocks to release some or all resources for an entity.
Alternatively, you can release all resources for an entity directly using the Entity
Terminator block.

4 Work with Resources

4-2

Tip To determine how long an entity holds a resource, insert a server block after the
Resource Acquire block. In the Service time parameter, enter how long you want the
entity to hold the resource.

An entity implicitly releases held resources when it:

• Is destroyed.
• Enters an Entity Replicator block and the block creates multiple copies of that entity.
• Is combined with other entities using the Composite Entity Creator block.
• Is split into its component entities using the Composite Entity Splitter block.

See Also
Resource Acquirer | Resource Pool | Resource Releaser

 See Also

4-3

Set Resource Amount with Attributes
Use the Selected Resources table of the Resource Acquirer block to receive the
resource amount definition from the block dialog box or an entity attribute. Using
attributes as the source for the resource requires synchronicity between these blocks:

• Entity Generator block with the attribute definition that Resource Acquirer wants to
supply the source amount

• Resource Pool block that defines the resource
• Resource Acquirer block the acquires the resource

This example shows this synchronicity.

1 Open a new model and add Resource Pool, Entity Generator, and Resource Acquirer
blocks. For the Resource Pool block:

• Set Resource name to water.
• Set Resource amount to 20.
• In the Statistics tab, select Amount in use, #u.

2 In the Entity Generator block dialog box, click the Entity type tab and in the Define
attributes table:

• Enter the attribute name, water_amount, to indicate that the attribute defines
the amount of the resource.

• Set the value to 10.
3 In the Resource Acquirer block dialog box, click the Entity type tab and under

Available Resources, select water and move it to the Selected Resources table.
4 In the Selected Resources table, in the water entry:

• For Amount Source, select Attribute.
• For Amount, enter water_amount to match the attribute name defined in the

Entity Generator block.
5 To complete the model, add the following blocks and connect them as shown in the

figure:

• Entity Terminator (select the Statistics tab Number of entities arrived, #a
check box)

4 Work with Resources

4-4

• Two Scope blocks

6 Simulate the model and observe the amount of resources in use (Scope).

See Also
Resource Acquirer | Resource Pool | Resource Releaser

 See Also

4-5

Process Batched Entities Using Event Actions
This example shows how to create, process, and split batched entities using Entity Batch
Creator and Entity Batch Splitter blocks. In the model, An Entity Generator block is used
to represent produced parts in a facility. The parts are batched by an Entity Batch Creator
block. A batch is processed by an Entity Server block. When the processing is complete,
the batch is split into individual parts by the Entity Batch Splitter block for their delivery.

In the model:

• Use an Entity Generator block to generate a Part with two attributes, Color and
Customer, representing color and delivery destination. To generate three different
colors and two different delivery destinations for each Part, in the Event actions tab,
in the Generate action field enter this code. field:

entity.Color = randi([1 3]);
entity.Customer = randi([1 2]);

• Use an Entity Batch Creator block to generate a batch that contains four parts.

• Use an Entity Server block to process and change the color of the third Part in each
batch. In the Event actions tab, in the Entry field enter this code.

entity.batch(3).Color = 5;

• Use an Entity Batch Splitter block to split parts. In the Entry action, use
disp(entity.batch(3).Color) to display the color of the third Part in each
processed batch.

4 Work with Resources

4-6

• Use an Entity Output Switch block to route a Part to the corresponding customer
based on its Customer attribute.

Simulate Model and Review Results

Simulate the model.

Open the Simulation Data Inspector and observe that the parts are generated with Color
values 1, 2, or 3.

• Observe that the Diagnostic Viewer displays Color values of the third entity in each
batch after batch processing.

 Process Batched Entities Using Event Actions

4-7

• Scope blocks labeled as For Customer 1 and For Customer 2 display the number of
parts delivered to each customer.

4 Work with Resources

4-8

See Also
Entity Batch Creator | Entity Batch Splitter | Entity Generator | Entity Output Switch |
Entity Server

More About
• “Model Using Resources” on page 4-2
• “Optimize SimEvents Models by Running Multiple Simulations” on page 5-26
• “Find and Extract Entities in SimEvents Models” on page 4-10
• “Resource Scheduling Using MATLAB Discrete-Event System and Data Store

Memory Blocks” on page 9-80

 See Also

4-9

Find and Extract Entities in SimEvents Models
You can find entities in a SimEvents model by using an Entity Find block. The block
searches and finds entities that use a particular resource from a Resource Pool block and
acquire it through a Resource Acquirer block.

You can use the Entity Find block for these applications.

• Model a supply chain to monitor perishable items and update the inventory records.
For instance, you can modify the price of an item when it is closer to its expiration
date.

• Model timers and perform actions on products based on timers.
• Model recall of products from a supply chain. You can reroute recalled products back

to the supply chain after repair.

Finding and Examining Entities
The Entity Find block helps you find and examine entities at their location. In this
example, the block finds entities that are tagged with a Resource1 resource from the
Resource Pool block. Then, an additional filtering condition helps to further filter the
found entities.

1 Add an Entity Generator block, Resource Pool block, Resource Acquirer block, Entity
Server block, and Entity Terminator block.

4 Work with Resources

4-10

The top model represents the flow of entities that acquires a Resource1 resource.
2 In the Entity Terminator block, output the Number of entities arrived, a statistic

and connect to a scope.
3 Add an Entity Find block. Output the Number of entities found, f statistic and

connect it to a scope.

By default, the block finds entities with the Resource1 tag.
4 Add another Entity Generator block and label it Trigger Entity Generator. Connect it

to the input port of the Entity Find block. In the block, change the Entity type name
to Trigger and Entity priority to 100.

Every time the Trigger Entity Generator generates a trigger entity, the Entity Find
block is triggered to find entities.

Note The entities in the model have priority 300 and the priority of the trigger entity
is set to 100 to make trigger entities higher priority in the event calendar. This
prevents the termination of the entities before they are found by the Entity Find
block.

5 Simulate the model and observe that the number of terminated entities is 10, which
is equal to the number of found entities by the Entity Find block. Every generated
entity acquires a Resource1 tag and there is no blocking of entities in the model.

 Find and Extract Entities in SimEvents Models

4-11

The Entity Find block finds entities with the Resource1 resource for every
generated trigger entity.

4 Work with Resources

4-12

6 In the Entity Generator Block Parameters dialog box, in the Generate action field,
add this code.

entity.Attribute1 = randi([1,2]);

The entities are generated with a random Attribute1 value 1 or 2.

 Find and Extract Entities in SimEvents Models

4-13

7 In the Entity Find Block Parameters dialog box, select the Additional filtering
condition check box. Add this code to replace any existing code and to set the
filtering condition.

match = isequal(trigger.Attribute1, entity.Attribute1);

The block finds the entities that acquire the Resource1 tag when the match is true.
That is, the Attribute1 value of an entity is equal to the trigger entity Attribute1
value.

8 In the Trigger Entity Generator, observe that the Attribute1 value is 1.
9 Simulate the model, observe that the number of found entities decreased to 3

because entities with the Attribute1 value 2 are filtered out by the additional
matching condition.

The trigger entity Attribute1 value is 1. The block finds entities that acquire
Resource1 tag and have the Attribute1 value 1.

4 Work with Resources

4-14

Extracting Found Entities
You can use the Entity Find block to find entities and extract them from their location to
reroute. In this example, 3 entities found in the previous example are extracted from the
system to be terminated.

To open the model, see Extract Found Entities Example.

 Find and Extract Entities in SimEvents Models

4-15

1 In the Entity Find Block Parameters dialog box, select the Extract found entities
check box.

Observe that a new output port appears at the Entity Find block for the extracted
entities.

2 Connect the output of the Entity Find block to a new Entity Terminator1 block.
3 Output the Number of entities extracted, ex statistic from the Entity Server block

and connect it to a scope.

Visualize the number of extracted entities from the server.
4 Output the Number of entities arrived, a statistic from the Entity Terminator1

block and connect it to a scope.

The statistic is used to observe the number of found and extracted entities from the
system.

5 Simulate the model. Observe that the Number of entities extracted, ex is 3.

4 Work with Resources

4-16

6 Observe that 3 found entities are extracted from the Entity Server block and
terminated in the Entity Terminator1 block.

 Find and Extract Entities in SimEvents Models

4-17

As a result, 7 entities arrive at the Entity Terminator block in the model.

Changing Found Entity Attributes
You can change the attributes of the found entities at their location or with extraction.

4 Work with Resources

4-18

1 Change the attributes of found entities at their location by entering MATLAB code in
the OnFound action field of the OnFound event action. For more information about
events and event actions, see “Events and Event Actions” on page 1-2.

2 Change the attributes of found and extracted entities when they enter, exit, or are
blocked by the Entity Find block. Enter MATLAB code in the Entry action, Exit
action, and Blocked action, field of the Event actions tab.

Triggering Entity Find Block with Event Actions
You can trigger the Entity Find block with event actions. In this example, the Entity Find
block is triggered when an entity enters the Entity Server block. Modify the previous
example by removing the Trigger Entity Generator and by adding the Entity Output
Switch, Entity Server1, Entity Terminator2 and Scope blocks to the model and connect
them as shown.

To open the model, see Trigger Entity Find Example.

1 In the Entity Output Switch block, set the Switching criterion to Equiprobable.

Entities flow through the Entity Server and Entity Server1 blocks with equal
probability.

 Find and Extract Entities in SimEvents Models

4-19

2 Replace the Trigger Entity Generator block by a Simulink Function block to trigger
Entity Find block. On the Simulink Function block, double-click the function
signature and enter Trigger(u).

3 In the Simulink Function block, add the Message Send block and connect it to an
Out1 block.

The Trigger(u) function call generates a message to trigger the Entity Find block
every time an entity enters the Entity Server1 block.

4 In the Entity Server block, in the Entry action field, enter this code.

Trigger(double(1));

Every entity entry calls the Trigger(u) function in the Simulink Function block that
triggers the Entity Find block.

5 In the Entity Find block, select the Additional filtering condition check box. Enter
this code.

match = isequal(2, entity.Attribute1);

Found entities have the Attribute1 value 2.
6 Simulate the model. Observe the scope that displays the extracted and terminated

entities when the Entity Find block is triggered by the entity entry to the Entity
Server block.

4 Work with Resources

4-20

Building a Firewall and an Email Server
You can use the Entity Find block to monitor multiple blocks in a model to examine or
extract entities and modify entity attributes.

This example represents an email server with a firewall to track, monitor, and discard
harmful emails before they reach the user. In the model, emails arrive from the Internet

 Find and Extract Entities in SimEvents Models

4-21

through an Entity Generator block. In the Firewall component, emails are classified as
harmful for instant discarding, suspicious for monitoring, or safe based on their source.
Harmful emails are tagged with a DiscardTag resource from the Resource Pool block
and instantly discarded from the system. Suspicious emails are tagged with MonitorTag
and tracked throughout the system for suspicious activity. If a suspicious activity is
detected, the email is discarded before it reaches the user. Safe emails are not monitored
or discarded.

To open the model, see Email Monitoring Example.

Build Firewall and Email Server Components

1 Add an Entity Generator block. In the block, set the Entity type name to Email and
attach two attributes as Source and Suspicious with initial value 0.

2 Add an Entity Server block. In the block, select the Event actions tab, and in the
Entry action field enter this code.

entity.Source = randi([1,3]);

The Source attribute value is randomly generated and it is 1 for a suspicious, 2 for a
safe, and 3 for a harmful email source.

4 Work with Resources

4-22

3 Add an Entity Output Switch block. In the block, set the Number of output ports to
3, the Switching criterion to From attribute, and the Switch attribute name to
Source.

4 Add two Resource Pool blocks and set their Resource name parameters to
MonitorTag and DiscardTag.

5 Add a Resource Acquirer block labeled Tag Emails for Monitoring. In the block, select
MonitorTag as Selected Resources.

6 Add another Resource Acquirer block labeled Tag Emails for Instant Discard. In the
block, select DiscardTag as Selected Resources

7 Add an Entity Input Switch block. In the block, set the Number of input ports to 3.
8 Add an Entity Store block. In the block, select the Event actions tab, and in the

Entry action field enter this code.

InstantDiscard(1);
entity.Suspicious = randi([1,2]);

9 Add an Entity Queue block. In the block, select the Event actions tab, and in the
Entry action field enter this code.

entity.Suspicious = randi([1,2]);

The Suspicious attribute of an email changes in the entry. If the Suspicious
attribute value is 2, the email is extracted and terminated. This represents the
randomly observed suspicious activity in the system.

10 Add another Entity Server block. In the block, set the Service time value to 3, select
the Event actions tab, in the Entry action field, enter this code.

entity.Suspicious = randi([1,2]);
11 Add an Entity Terminator block labeled Emails Read by User, and connect all the

blocks as shown in the model.

Monitor and Discard Emails with Entity Find Block

1 Add a Simulink Function block.

a Double-click the function signature on the Simulink Function block and enter
InstantDiscard(u).

b Double-click the Simulink Function block. Add a Message Send block and an
Out1 block.

 Find and Extract Entities in SimEvents Models

4-23

2 In the parent model, add an Entity Find block. In the block, set Resource to
DiscardTag and select Extract found entities check box.

Any email entry calls the InstantDiscard() function and triggers the Entity Find
block to find and discard harmful emails.

3 Add another Entity Terminator block labeled Instantly Discarded Emails.
4 Add another Entity Find block. In the block, set the Resource to MonitorTag and

select the Extract found entities and the Additional filtering condition check
boxes. In the Matching condition field, enter this code.

match = isequal(trigger.Attribute1, entity.Suspicious);
5 Add another Entity Generator block labeled Entity Generator1. In the block, set the

Period to 5, the Entity priority to 100, the Entity type name to Trigger, and the
Attribute Initial Value to 2.

6 Add another Entity Terminator block labeled Monitored and Discarded Emails.
Connect all the blocks as shown in the model.

7 Output the Number of entities arrived, a statistic from all of the Entity Terminator
blocks, and connect them to the Scope blocks for visualization.

8 Increase the simulation time to 50 and simulate the model. Observe the emails that
are instantly discarded or discarded after monitoring.

4 Work with Resources

4-24

 Find and Extract Entities in SimEvents Models

4-25

Observe the emails that reach the user after the filtering.

4 Work with Resources

4-26

9 Optionally, visualize the number of extracted emails from any block in the model. For
instance, in the Email Queue, select the Number of entities extracted, ex statistic
and connect to a scope. Observe that six emails are extracted from the queue.

 Find and Extract Entities in SimEvents Models

4-27

See Also
Resource Acquirer | Resource Pool | Resource Releaser

4 Work with Resources

4-28

Related Examples
• “Optimize SimEvents Models by Running Multiple Simulations” on page 5-26

More About
• “Model Using Resources” on page 4-2
• “Set Resource Amount with Attributes” on page 4-4

 See Also

4-29

Visualization, Statistics, and
Animation

• “Interpret SimEvents Models Using Statistical Analysis” on page 5-2
• “Visualization and Animation for Debugging” on page 5-14
• “Model Traffic Intersections as a Queuing Network” on page 5-17
• “Optimize SimEvents Models by Running Multiple Simulations” on page 5-26
• “Use the Sequence Viewer Block to Visualize Messages, Events, and Entities”

on page 5-32

5

Interpret SimEvents Models Using Statistical Analysis
In this section...
“Output Statistics for Data Analysis” on page 5-2
“Output Statistics for Run-Time Control” on page 5-2
“Average Queue Length and Average Store Size” on page 5-6
“Average Wait” on page 5-9
“Number of Entities Arrived” on page 5-11
“Number of Entities Departed” on page 5-11
“Number of Entities Extracted” on page 5-12
“Number of Entities in Block” on page 5-12
“Number of Pending Entities” on page 5-12
“Pending Entity Present in Block” on page 5-12
“Utilization” on page 5-12

Choosing the right statistical measure is critical for evaluating the model performance.
You can use output statistics from the SimEvents library blocks for data analysis and run-
time control.

Output Statistics for Data Analysis
Consider these statistical measures for more efficient behavior interpretation.

• Identify the appropriate size of the samples to compute more meaningful statistics.
• Decide if you want to investigate the transient behavior, the steady-state behavior, or

both.
• Specify the number of simulations that ensures sufficient confidence in the results.

For an example, see “Explore Statistics and Visualize Simulation Results”.

Output Statistics for Run-Time Control
Some systems rely on statistics to influence the dynamics. In this example, a queuing
system with discouraged arrivals has a feedback loop that adjusts the arrival rate
throughout the simulation based on the statistics reported by the queue and the server. To

5 Visualization, Statistics, and Animation

5-2

learn more details about this example, see “Adjust Entity Generation Times Through
Feedback” on page 1-26.

A subset of the blocks in SimEvents library provides statistics output for run-time control.
When you create simulations that use statistical signals to control the dynamics, you
access the current statistical values at key times throughout the simulation, not just at
the end of the simulation.

This table lists SimEvents blocks that output commonly used statistics for data analysis
and run-time control.

Block
Name

Statistics Parameter
Averag
e
queue
length/
store
size, l

Averag
e wait,
w

Numbe
r of
entitie
s
arrived
, a

Numbe
r of
entitie
s
depart
ed, d

Numbe
r of
entitie
s
extract
ed, ex

Numbe
r of
entitie
s in
block,
n

Numbe
r of
pendin
g
entitie
s, np

Pendin
g
entity
presen
t in
block,
pe

Utilizat
ion,
util

Convey
or
System

Entity
Batch
Creator

 Interpret SimEvents Models Using Statistical Analysis

5-3

Block
Name

Statistics Parameter
Averag
e
queue
length/
store
size, l

Averag
e wait,
w

Numbe
r of
entitie
s
arrived
, a

Numbe
r of
entitie
s
depart
ed, d

Numbe
r of
entitie
s
extract
ed, ex

Numbe
r of
entitie
s in
block,
n

Numbe
r of
pendin
g
entitie
s, np

Pendin
g
entity
presen
t in
block,
pe

Utilizat
ion,
util

Entity
Batch
Splitter

Entity
Find

Entity
Genera
tor

Entity
Queue

Entity
Selecto
r

Entity
Server

Entity
Store

Entity
Termin
ator

Multica
st
Receive
Queue

5 Visualization, Statistics, and Animation

5-4

Block
Name

Statistics Parameter
Averag
e
queue
length/
store
size, l

Averag
e wait,
w

Numbe
r of
entitie
s
arrived
, a

Numbe
r of
entitie
s
depart
ed, d

Numbe
r of
entitie
s
extract
ed, ex

Numbe
r of
entitie
s in
block,
n

Numbe
r of
pendin
g
entitie
s, np

Pendin
g
entity
presen
t in
block,
pe

Utilizat
ion,
util

Resour
ce
Acquire
r

Resour
ce Pool

The statistical parameters are updated on particular events during the simulation. For
example, when a full N-server advances one entity to the next block, the statistical signal
representing the number of entities in the block assumes the value N-1. However, if the
departure causes another entity to arrive at the block at the same time instant, then the
statistical signal assumes the value N. The value of N-1, which does not persist for a
positive duration, is a zero-duration value.. This phenomenon occurs in many situations.

This table lists the events that update the block statistics.

Statistics Port Updated on Event
Entry Exit Blocked Preempted Extracted

Average
queue length/
store size, l

Average wait,
w

Number of
entities
arrived, a

Number of
entities
departed, d

 Interpret SimEvents Models Using Statistical Analysis

5-5

Statistics Port Updated on Event
Entry Exit Blocked Preempted Extracted

Number of
entities
extracted, ex

Number of
entities in
block, n

Number of
pending
entities, np

Pending entity
present in
block, pe

Utilization,
util

Average Queue Length and Average Store Size
The formula to compute average queue length or store size

Average queue length, l is the accumulated time-weighted average queue. To compute
Average queue length, l at time tf, the block:

1 Multiplies the size of the queue n by its duration, t = ti - ti-1, to calculate the time-
weighted queue.

2 Sums over the time-weighted queue and averages it over total time tf.

l = 1
tf
∑

i = 1

f
nt × t

Where:

• t is the time between the entity arrival and / or the number of departure events.
• f is the total number of entity arrival and / or the number of departure events between

t0 and tf.

5 Visualization, Statistics, and Animation

5-6

• i = 1 for simulation time t0 = 0 .

Average store size, l is computed similarly by replacing the queue length with the store
size.

Average queue length example in the Entity Queue block

This example shows the average queue length of the entities in the Entity Queue block.

Calculate average queue length in the simple queuing system example

The service time for the Entity Server block is larger than the entity intergeneration time
of the Entity Generator block. The entities are queued and sorted in the Entity Queue
block. The scope displays the number of entities.

 Interpret SimEvents Models Using Statistical Analysis

5-7

For the duration between 0 and 1, the average queue length is 0 because the size of the
queue is 0. Between 1 and 2 the queue length is 1. Average queue length at time tf = 2 is
calculated as follows.

l = 1
2 ∑i = 1

2
nt × t = 1

2(0 + 1 × 1) = 0.5

The queue size is 2 between the times 2 and 6 for the duration of 4. Average queue length
at time tf = 6 is calculated using this equation.

l = 1
6 ∑i = 1

6
nt × t = 1

6(0 + 1 × 1 + 2 × 4) = 1.5

The average queue size is calculated for each duration. The Scope block displays its value
for the duration of the simulation.

5 Visualization, Statistics, and Animation

5-8

Average Wait
The formula to compute average wait

The Average wait, w parameter represents the sum of the wait times for entities
departing the block, divided by their total number, n.

Wait time, wj, is the simulated time that an entity resides within a block. This wait time is
not necessarily equivalent to the time an entity is blocked. It is the duration between an
entity's entry into and exit from a block. For instance, wait time is 1 for an entity that
travels through an unblocked Entity Server with a service time of 1s.

w =
∑

j = 1

n
w j

n

Average wait of entities example in the Entity Server block

This example shows the average wait time for entities that are served in the Entity Server
block.

 Interpret SimEvents Models Using Statistical Analysis

5-9

Calculate average wait in the example

The duration of an entity's entry into and exit from the Entity Server block is computed by
the gettime() function in the Simulink Function block.

The Diagnostic Viewer displays the duration between the entry and exit of six consecutive
entities.

5 Visualization, Statistics, and Animation

5-10

The Scope block shows the average wait time for each entity departure event from the
Entity Server block. For instance, the wait time for the first entity is 1 and the wait time
for the second entity is 2. The average wait time calculated for the first two entities is
1.5. The plot displays this value at the simulation time 6. For the first four entities, the
sum of the wait times is 10 and the average wait time at simulation time 12 becomes 2.5.

Number of Entities Arrived
The Number of entities arrived, a parameter outputs the cumulative count for the
number of entities that arrive at the block.

Number of Entities Departed
The Number of entities departed, d parameter outputs the cumulative count for the
number of entities that depart the block.

 Interpret SimEvents Models Using Statistical Analysis

5-11

Number of Entities Extracted
Entity Find block finds entities in a SimEvents model and extracts them from their
location to reroute. The Number of entities extracted, ex parameter outputs the
number of entities that are extracted from a block.

Number of Entities in Block
The Number of entities in block, n parameter outputs the number of entities that are
in the block.

Number of Pending Entities
The Number of pending entities, np parameter outputs the number of pending entities
the block has served that have yet to depart.

Pending Entity Present in Block
The Pending entity present in block, pe parameter indicates whether an entity that is
yet to depart is present in the block. The value is 1 if there are any pending entities, and
0 otherwise.

Utilization
The Utilization, util parameter indicates the average time a block is occupied. The block
calculates utilization for each entity departure event, which is the ratio of the total wait
time for entities to the server capacity, C, multiplied by the total simulation time, tf .
Utilization for n entities is calculated using this equation.

util =
∑

j = 1

n
w j

C × tf

References
[1] Cassandras, Christos G. Discrete Event Systems: Modeling and Performance Analysis.

Homewood, Illinois: Irwin and Aksen Associates, 1993.

5 Visualization, Statistics, and Animation

5-12

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator | Multicast Receive
Queue | Resource Acquirer

More About
• “Count Entities”
• “Visualization and Animation for Debugging” on page 5-14
• “Explore Statistics and Visualize Simulation Results”

 See Also

5-13

Visualization and Animation for Debugging
In this section...
“Which Debugging Tool to Use” on page 5-14
“Observe Entities with Animation” on page 5-15
“Explore the System Using the Simulink Simulation Stepper” on page 5-15
“Information About Race Conditions and Random Times” on page 5-16

Visualize and animate simulations in SimEvents models using tools available in Simulink
and SimEvents software.

• You can place many Simulink Sink blocks directly on the entity line to observe entities,
including the To Workspace and dashboard scopes.

• If the entity type is anonymous, you can place a Scope block.
• To observe bus or structured type entities, use the Simulation Data Inspector or

dashboard scopes. The Scope and Display blocks do not support buses.

Which Debugging Tool to Use
These tools help you explore various elements of a SimEvents model.

Items to Observe Visualization Tool and Its Purpose
Statistics • Simulation Data Inspector — Show the statistic

throughout the simulation. For more information, see
“Inspect and Analyze Simulation Results” (Simulink).

• Simulink To Workspace block — Write the data set to the
MATLAB workspace when the simulation stops or pauses.

• Simulink Scope block — Create a plot using the statistic.
• Simulink Display block — Show the statistic throughout

the simulation.
• Simulink To File block — Write the data set into a MAT-file.
• Simulink Dashboard Scope block — Create a plot using the

statistic.

Entities passing through
model

Entity animation Animation — Highlight active entities in the simulation.

5 Visualization, Statistics, and Animation

5-14

Items to Observe Visualization Tool and Its Purpose
Step of a Simulation Simulink Simulation Stepper — Step forward and back

through a simulation. For more information, see “Use
Simulation Stepper” (Simulink).

Custom animation Use SimEvents custom visualization API — Create custom
observers of the entities and events in a model. For more
information, see “Use SimulationObserver Class to Monitor a
SimEvents Model” on page 10-2.

Note The Simulink Floating Scope does not support SimEvents models.

Simulation Data Inspector is a unified user interface for viewing both entities and signal
(for example, statistics) data. For more information, see “Inspect and Analyze Simulation
Results” (Simulink).

Observe Entities with Animation
During simulation, animation provides visual verification that your model behaves as you
expect. Animation highlights active entities in a model as execution progresses. You can
control the speed of entity activity animation during simulation, or turn off animation. In a
model window, right-click and select Animation Speed.

• Fast
• Medium
• Slow
• None

The Fast animation speed shows the active highlights at each time step. To add delay
with each time step, set the animation speed to Medium or Slow. To turn off the
animation, select None.

Explore the System Using the Simulink Simulation Stepper
Simulation Stepper enables you to step through major time steps of a simulation. Use this
tool to explore your discrete-event system. For more information, see “Simulation
Stepper” (Simulink).

 Visualization and Animation for Debugging

5-15

Information About Race Conditions and Random Times
You can vary the processing sequence for simultaneous events or make the
intergeneration times or service times random.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator | Multicast Receive
Queue | Resource Acquirer

More About
• “Explore Statistics and Visualize Simulation Results”
• “Count Entities”

5 Visualization, Statistics, and Animation

5-16

Model Traffic Intersections as a Queuing Network
This example shows how to create a SimEvents® model to represent a vehicle traffic
network and to investigate mean waiting time of vehicles when the network is in steady-
state.

Suppose a vehicle traffic network consists of two vehicle entry and two vehicle exit points,
represented by brown and green nodes in the next figure. Each blue node in the network
represents a route intersection with a traffic light, and the arrows represent the route
connections at each intersection. The values next to the arrows represent the percentage
of vehicles taking the route in that intersection.

The rate of vehicle entries into the network are represented by the Poisson processes with
rates 0.5 for Entry 1 and 0.15 for Entry 2. Service rates represent the time vehicles
spend at each intersection, which are drawn from exponential distribution with mean 1.
The arrow values are the probabilities of choosing a route for vehicles in the intersection.

Model Traffic Network

To represent a vehicle traffic network, this model uses Entity Generator, Entity Server,
Entity Queue, Entity Input Switch, Entity Output Switch, and Entity Terminator blocks.

model = 'QueueServerTransportationNetwork';
open_system(model);

 Model Traffic Intersections as a Queuing Network

5-17

Model Vehicle Arrivals

The two Entity Generator blocks represent the network entry points. Their entity
intergeneration time is set to create a Poisson arrival process.

This is the code in the Intergeneration time action field of the Entry 1 block.

% Random number generation
coder.extrinsic('rand');
ValEntry1 = 1;
ValEntry1 = rand();
% Pattern: Exponential distribution
mu = 0.5;
dt = -1/mu * log(1 - ValEntry1);

In the code, mu is the Poisson arrival rate. The coder.extrinsic('rand') is used
because there is no unique seed assigned for the randomization. For more information
about random number generation in event actions, see “Event Action Languages and
Random Number Generation” on page 1-5. To learn more about extrinsic functions, see
“Working with mxArrays” (Simulink).

Model Vehicle Route Selection

Entities have a Route attribute that takes value 1 or 2. The value of the attribute
determines the output port from which the entities depart an Entity Output Switch block.

This code in the Entry action of the Entity Server 1 represents the random route
selections of vehicles at the intersection represented by Node 1.

5 Visualization, Statistics, and Animation

5-18

Coin1 = 1;
coder.extrinsic('rand');
Coin1 = rand;
if Coin1 <= 0.2
 entity.Route = 1;
else
 entity.Route = 2;
end

This is an example of random Route attribute assignments when entities enter the Entity
Server 1 block. The value of Route is assigned based on the value of the random variable
rand that takes values between 0 and 1. Route becomes 1 if rand is less than or equal to
0.2, or 2 if rand is greater than 0.2.

Model Route Intersections

Each blue node represents a route intersection and includes an infinite capacity queue,
and a server with service time drawn from an exponential distribution with mean 1.

Entity Server 1 contains this code.

% Pattern: Exponential distribution
coder.extrinsic('rand');
Val1 = 1;
Val1 = rand();
mu = 1;
dt = -mu * log(1 - Val1);

Calculate Mean Waiting Time for Vehicles in the Network

The network is constructed as an open Jackson network that satisfies these conditions.

• All arriving vehicles can exit the network.
• Vehicle arrivals are represented by Poisson process.
• Vehicles depart an intersection as first-in first-out. The wait time in an intersection is

exponentially distributed with mean 1.
• A vehicle departing the intersection either takes an available route or leaves the

network.
• The utilization of each traffic intersection queue is less than 1.

In the steady state, every queue in an open Jackson network behaves independently as an
M/M/1 queue. The behavior of the network is the product of individual queues in

 Model Traffic Intersections as a Queuing Network

5-19

equilibrium distributions. For more information about M/M/1 queues, see “M/M/1
Queuing System”.

The vehicle arrival rate for each node is calculated using this formula.

In the formula:

• is the rate of external arrivals for node .
• is the total number of incoming arrows to node .
• is the probability of choosing the node from node .

• is the total vehicle arrival rate to node .

For all of the nodes in the network, the equation takes this matrix form.

Here, is the routing matrix, and each element represents the probability of transition
from node to node .

For the network investigated here, this is the routing matrix.

 is the vector of external arrivals to each node.

Using these values, the mean arrival rate is calculated for each node.

Each node behaves as an independent M/M/1 queue, and the mean waiting time for each
node is calculated by this formula. See “M/M/1 Queuing System”.

5 Visualization, Statistics, and Animation

5-20

Mean waiting time for each node is calculated by incorporating each element of .

View Simulation Results

Simulate the model and observe that the mean waiting time in each queue in the network
matches the calculated theoretical results.

• The waiting time for the queue in node 1 converges to 1.

 Model Traffic Intersections as a Queuing Network

5-21

• The waiting time for the queue in node 2 converges to 0.11.

5 Visualization, Statistics, and Animation

5-22

• The waiting time for the queue in node 3 converges to 0.88.

 Model Traffic Intersections as a Queuing Network

5-23

• The waiting time for the queue in node 4 converges to 0.58.

5 Visualization, Statistics, and Animation

5-24

References

[1] Jackson, James R. Operations research Vol. 5, No. 4 (Aug., 1957), pp 518-521.

 Model Traffic Intersections as a Queuing Network

5-25

Optimize SimEvents Models by Running Multiple
Simulations

To optimize models in workflows that involve running multiple simulations, you can create
simulation tests using the Simulink.SimulationInput object.

Grocery Store Model
The grocery store example uses multiple simulations approach to optimize the number of
shopping carts required to prevent long customer waiting lines.

In this example, the Entity Generator block represents the customer entry to the store.
The customers wait in line if necessary and get a shopping cart through the Resource
Acquirer block. The Resource Pool block represents the available shopping carts in the
store. The Entity Server block represents the time each customer spends in the store. The
customers return the shopping carts through the Resource Releaser block, while the
Entity Terminator block represents customer departure from the store. The Average wait,

5 Visualization, Statistics, and Animation

5-26

w statistic from the Resource Acquirer block is saved to the workspace by the To
Workspace block from the Simulink® library.

Build the Model
Grocery store customers wait in line if there are not enough shopping carts. However,
having too many unused shopping carts is considered a waste. The goal of the example is
to investigate the average customer wait time for a varying number of available shopping
carts in the store. To compute the average customer wait time, multiple simulations are
run by using the sim command. For each simulation, a single available shopping cart
value is used. For more information on the sim command, see “Run Multiple Simulations”
(Simulink) and “Run Parallel Simulations” (Simulink).

In the simulations, the available shopping cart value ranges from 20 to 50 and in each
simulation it increases by 1. It is assumed that during the operational hours, customers
arrive at the store with a random rate drawn from an exponential distribution and their
shopping duration is drawn from a uniform distribution.

1 In the Entity Generator block, set the Entity type name to Customers and the
Time source to MATLAB action. Then, enter this code.

persistent rngInit;
if isempty(rngInit)
 seed = 12345;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = 1;
dt = -mu*log(1-rand());

The time between the customer arrivals is drawn from an exponential distribution
with mean 1 minute.

2 In the Resource Pool block, specify the Resource name as ShoppingCart. Set the
Resource amount to 20.

Initial value of available shopping carts is 20.
3 In the Resource Acquirer block, set the ShoppingCart as the Selected Resources,

and set the Maximum number of waiting entities to Inf.

 Optimize SimEvents Models by Running Multiple Simulations

5-27

The example assumes a limitless number of customers who can wait for a shopping
cart.

4 In the Entity Server block, set the Capacity to Inf.

The example assumes a limitless number of customers who can shop in the store.
5 In the Entity Server block, set the Service time source to MATLAB action and

enter the code below.

persistent rngInit;
if isempty(rngInit)
 seed = 123456;
 rng(seed);
 rngInit = true;
end

% Pattern: Uniform distribution
% m: Minimum, M: Maximum
m = 20;
M = 40;
dt = m+(M-m)*rand;

The time a customer spends in the store is drawn from a uniform distribution on the
interval between 20 minutes and 40 minutes.

6 Connect the Average wait, w statistic from the Resource Acquirer block to a To
Workspace block and set its Variable name to AverageCustomerWait.

7 Set the simulation time to 600.

The duration of one simulation is 10 hours of operation which is 600 minutes.
8 Save the model.

For this example, the model is saved with the name
GroceryStore_ShoppingCartExample.

Run Multiple Simulations to Optimize Resources
1 Open a new MATLAB script and run this MATLAB code for multiple simulations.

a Initialize the model and the available number of shopping carts for each
simulation, which determines the number of simulations.

% Initialize the Grocery Store model with
% random intergeneration time and service time value

5 Visualization, Statistics, and Animation

5-28

mdl = 'GroceryStore_ShoppingCartExample';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

% Range of number of shopping carts that is
% used in each simulation
ShoppingCartNumber_Sweep = (20:1:50);
NumSims = length(ShoppingCartNumber_Sweep);

In each simulation, number of available shopping carts is increased by 1.
b Run each simulation with the corresponding available shopping cart value and

output the results.

% Run NumSims number of simulations
NumCustomer = zeros(1,NumSims);
for i = 1:1:NumSims
 in(i) = Simulink.SimulationInput(mdl);
 % Use one ShoppingCartNumber_sweep value for each iteration
 in(i) = setBlockParameter(in(i), [mdl '/Resource Pool'], ...
 'ResourceAmount', num2str(ShoppingCartNumber_Sweep(i)));
end

% Output the results for each simulation
out = sim(in);

c Gather and visualize the results.

% Compute maximum average wait time for the
% customers for each simulation
MaximumWait = zeros(1,NumSims);
for i=1:NumSims
 MaximumWait(i) = max(out(1, i).AverageCustomerWait.Data);
end
% Visualize the plot
plot(ShoppingCartNumber_Sweep, MaximumWait,'bo');
grid on
xlabel('Number of Available Shopping Carts')
ylabel('Maximum Wait Time')

2 Observe the plot that displays the maximum average wait time for the customers as a
function of available shopping carts.

 Optimize SimEvents Models by Running Multiple Simulations

5-29

The plot displays the tradeoff between having 46 shopping carts available for zero
wait time versus 33 shopping carts for a 2-minute customer wait time.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Optimization of Shared Resources in a Batch Production Process”
• “Explore Statistics and Visualize Simulation Results”

5 Visualization, Statistics, and Animation

5-30

More About
• “Interpret SimEvents Models Using Statistical Analysis” on page 5-2
• “Count Entities”
• “Visualization and Animation for Debugging” on page 5-14
• “Adjust Entity Generation Times Through Feedback” on page 1-26
• “Save SimEvents Simulation Operating Point” on page 6-6

 See Also

5-31

Use the Sequence Viewer Block to Visualize Messages,
Events, and Entities

To see the interchange of messages and events between Stateflow charts in Simulink
models and the movement of entities between SimEvents blocks, add a Sequence Viewer
block to your Simulink model.

In the Sequence Viewer block, you can view event data related to Stateflow chart
execution and the exchange of messages between Stateflow charts. The Sequence Viewer
window shows messages as they are created, sent, forwarded, received, and destroyed at
different times during model execution. The Sequence Viewer window also displays state
activity, transitions, and function calls to Stateflow graphical functions, Simulink
functions, and MATLAB functions.

With the Sequence Viewer block, you can visualize the movement of entities between
blocks when simulating SimEvents models. All SimEvents blocks that can store entities
appear as lifelines in the Sequence Viewer window. Entities moving between these blocks
appear as lines with arrows. You can view calls to Simulink Function blocks and to
MATLABFunction blocks.

You can add a Sequence Viewer block to the top level of a model or any subsystem. If you
place a Sequence Viewer block in a subsystem that does not have messages, events, or
state activity, the Sequence Viewer window informs you that there is nothing to display.

For instance, suppose that you simulate the Stateflow example sf_msg_traffic_light.

5 Visualization, Statistics, and Animation

5-32

This model has three Simulink subsystems: Traffic Light 1, Traffic Light 2, and GUI. The
Stateflow charts in these subsystems exchange data by sending messages. As messages
pass through the system, you can view them in the Sequence Viewer window. The
Sequence Viewer window represents each block in the model as a vertical lifeline with
simulation time progressing downward.

 Use the Sequence Viewer Block to Visualize Messages, Events, and Entities

5-33

Components of the Sequence Viewer Window
Navigation Toolbar

At the top of the Sequence Viewer window, a navigation toolbar displays the model
hierarchy path. Using the toolbar buttons, you can:

•
 Show or hide the Property Inspector.

• Select an automatic or manual layout.
• Show or hide inactive lifelines.
•

 Save Sequence Viewer block settings.

5 Visualization, Statistics, and Animation

5-34

•
 Restore Sequence Viewer block settings.

• Configure Sequence Viewer block parameters.
• Access the Sequence Viewer block documentation.

Property Inspector

In the Property Inspector, you can choose filters to show or hide:

• Events
• Messages
• Function Calls
• State Changes and Transitions

Header Pane

The header pane below the Sequence Viewer toolbar shows lifeline headers containing
the names of the corresponding blocks in a model.

• Gray rectangular headers correspond to subsystems.
• White rectangular headers correspond to masked subsystems.
• Yellow headers with rounded corners correspond to Stateflow charts.

To open a block in the model, click the name in the corresponding lifeline header. To show
or hide a lifeline, double-click the corresponding header. To resize a lifeline header, click
and drag its right-hand side. To fit all lifeline headers in the Sequence Viewer window,
press the space bar.

Message Pane

Below the header pane is the message pane. The message pane displays messages,
events, and function calls between lifelines as arrows from the sender to the receiver. To
display sender, receiver, and payload information in the Property Inspector, click the
arrow corresponding to the message, event, or function call.

 Use the Sequence Viewer Block to Visualize Messages, Events, and Entities

5-35

Navigate the Lifeline Hierarchy
In the Sequence Viewer window, the hierarchy of lifelines corresponds to the model
hierarchy. When you pause or stop the model, you can expand or contract lifelines and
change the root of focus for the viewer.

Expand a Parent Lifeline

In the message pane, a thick, gray lifeline indicates that you can expand the lifeline to see
its children. To show the children of a lifeline, click the expander icon below the
header or double-click the parent lifeline.

For example, expanding the lifeline for the Traffic Light 1 block reveals two new lifelines
corresponding to the Stateflow charts Ped Button Sensor and Controller.

5 Visualization, Statistics, and Animation

5-36

Expand a Masked Subsystem Lifeline

The Sequence Viewer window displays masked subsystems as white blocks. To show the
children of a masked subsystem, point over the bottom left corner of the lifeline header
and click the arrow.

For example, the GUI subsystem contains four masked subsystems: Traffic Lamp 1,Traffic
Lamp 2, Ped Lamp 1, and Ped Lamp 2.

 Use the Sequence Viewer Block to Visualize Messages, Events, and Entities

5-37

You can display the child lifelines in these masked subsystems by clicking the arrow in the
parent lifeline header.

Change Root of Focus

To make a lifeline the root of focus for the viewer, point over the bottom left corner of the
lifeline header and click the arrow. Alternatively, you can use the navigation toolbar at the
top of the Sequence Viewer window to move the current root up and down the lifeline
hierarchy. To move the current root up one level, press the Esc key.

The Sequence Viewer window displays the current root lifeline path and shows its child
lifelines. Any external events and messages are displayed as entering or exiting through
vertical slots in the diagram gutter. When you point to a slot in the diagram gutter, a
tooltip displays the name of the sending or receiving block.

5 Visualization, Statistics, and Animation

5-38

View State Activity and Transitions
To see state activity and transitions in the Sequence Viewer window, expand the state
hierarchy until you have reached the lowest child state. Vertical yellow bars show which
state is active. Blue horizontal arrows denote the transitions between states.

In this example, you can see a transition from Go to PrepareToStop followed, after 1
second, by a transition to Stop.

 Use the Sequence Viewer Block to Visualize Messages, Events, and Entities

5-39

To display the start state, end state, and full transition label in the Property Inspector,
click the arrow corresponding to the transition.

To display information about the interactions that occur while a state is active, click the
yellow bar corresponding to the state. In the Property Inspector, use the Search Up and
Search Down buttons to move through the transitions, messages, events, and function
calls that take place while the state is active.

5 Visualization, Statistics, and Animation

5-40

View Function Calls
The Sequence Viewer block displays function calls and replies. This table lists the type of
support for each type of function call.

Function Call Type Support
Calls to Simulink
Function blocks

Fully supported

Calls to Stateflow
graphical or
Stateflow MATLAB
functions

• Scoped — Select the Export chart level functions chart
option. Use the chartName.functionName dot notation.

• Global — Select the Treat exported functions as globally
visible chart option. You do not need the dot notation.

Calls to function-call
subsystems

Not displayed in the Sequence Viewer window

The Sequence Viewer window displays function calls as solid arrows labeled with the
format function_name(argument_list). Replies to function calls are displayed as
dashed arrows labeled with the format [argument_list]=function_name.

For example, in the model slexPrinterExample, a subsystem calls the Simulink
Function block addPrinterJob. The function block replies with an output value of
false.

Simulation Time in the Sequence Viewer Window
The Sequence Viewer window shows events vertically, ordered in time. Multiple events in
Simulink can happen at the same time. Conversely, there can be long periods of time
during simulation with no events. As a consequence, the Sequence Viewer window shows

 Use the Sequence Viewer Block to Visualize Messages, Events, and Entities

5-41

matlab:slexPrinterExample

time by using a combination of linear and nonlinear displays. The time ruler shows linear
simulation time. The time grid shows time in a nonlinear fashion. Each time grid row,
bordered by two blue lines, contains events that occur at the same simulation time. The
time strip provides the times of the events in that grid row.

Time ruler

Time grid

Time strip

Time slider

To show events in a specific simulation time range, use the scroll wheel or drag the time
slider up and down the time ruler. To navigate to the beginning or end of the simulation,
click the Go to first event or Go to last event buttons. To see the entire simulation
duration on the time ruler, click the Fit to view button .

When using a variable step solver, you can adjust the precision of the time ruler. In the
Model Explorer, on the Main tab of the Sequence Viewer Block Parameters pane, adjust
the value of the Time Precision for Variable Step field.

Redisplay of Information in the Sequence Viewer Window
The Sequence Viewer block saves the order and states of lifelines between simulation
runs. When you close and reopen the Sequence Viewer window, it preserves the last open

lifeline state. To save a particular viewer state, click the Save Settings button in the
toolbar. Saving the model then saves that state information across sessions. To load the

saved settings, click the Restore Settings button .

5 Visualization, Statistics, and Animation

5-42

You can modify the Time Precision for Variable Step and History parameters only
between simulations. You can access the buttons in the toolbar before simulation or when
the simulation is paused. During a simulation, the buttons in the toolbar are disabled.

See Also
Sequence Viewer

More About
• “Synchronize Model Components by Broadcasting Events” (Stateflow)
• “Communicate with Stateflow Charts by Sending Messages” (Stateflow)

 See Also

5-43

Learning More About SimEvents
Software

• “Event Calendar” on page 6-2
• “Entity Priorities” on page 6-3
• “Livelock Prevention” on page 6-5
• “Save SimEvents Simulation Operating Point” on page 6-6
• “Example Model to Count Simultaneous Departures from a Server” on page 6-12
• “Example Model for Noncumulative Entity Count” on page 6-13
• “Example Model for Discouraged Arrival” on page 6-14
• “A Simple Example of Generating Multiple Entities” on page 6-15
• “A Simple Example of Event-Based Entity Generation” on page 6-16
• “Serve Preferred Customers First” on page 6-17
• “Find and Examine Entities” on page 6-18
• “Extract Found Entities” on page 6-21
• “Trigger Entity Find Block with Event Actions” on page 6-22
• “Build a Firewall and an Email Server” on page 6-23
• “Implement the Custom Entity Storage Block” on page 6-24
• “Implement the Custom Entity Storage Block with Iteration Event” on page 6-25
• “Implement the Custom Entity Storage Block with Two Timer Events” on page 6-26
• “Implement the Custom Entity Generator Block” on page 6-27
• “Implement the Custom Entity Storage Block with Two Storages” on page 6-28

6

Event Calendar
During a simulation, the model maintains a list, called the event calendar, of upcoming
events that are scheduled for the current simulation time or future times. The event
calendar sorts multiple events that are scheduled for the same time by the priority of the
entity for which they are scheduled. The model refers to the event calendar to execute
events at the correct simulation time and in an appropriately prioritized sequence.

These are the events that the event calendar tracks.

Event For Blocks
Generate Entity Generator, MATLAB Discrete-Event System
Forward Entity Generator, Entity Queue, Multicast Receive Queue, Entity

Server, Entity Terminator, Discrete Event Chart, MATLAB
Discrete Event System, Entity Replicator, Resource Acquirer

ServiceComplete Entity Server
Timer MATLAB Discrete-Event System, Discrete Event Chart
Iterate MATLAB Discrete-Event System
Destroy MATLAB Discrete-Event System

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity Server | MATLAB Discrete
Event System | Resource Acquirer

More About
• “Debug SimEvents Models” on page 12-2
• “Visualization and Animation for Debugging” on page 5-14
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-8
• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2

6 Learning More About SimEvents Software

6-2

Entity Priorities
SimEvents software uses entity priorities to prioritize events. The smaller the priority
value, the higher the priority.

You specify entity priorities when you generate entities. You can later change entity
priorities using an event action for the priority. For example, in the Entity Generator
Event actions tab, you can define an event action to change the entity priority during
simulation using code such as:

entitySys.priority=MATLAB code

The event calendar includes event types such as:

• Entity generation
• Entity forwarding
• Entity destruction
• Timer
• Service completion

The event calendar sorts events based on times and associated entity priorities as
outlined here:

1 The event that has the earliest time executes first.
2 If two entities have events occurring at the same time, the event with the entity of

higher priority occurs first.
3 If both entities have the same priority, it is undefined which event is served first. To

get deterministic order, change one of the entity priorities.

For example, assume a forward event associated with an entity that exits block A and
enters block B. The priority of this event is the priority of the entity being forwarded. If
there are two entities trying to depart a block at the same time, the entity with the higher
priority departs first.

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity Replicator | Entity Server |
Entity Terminator | MATLAB Discrete Event System | Multicast Receive Queue | Resource
Acquirer

 Entity Priorities

6-3

Related Examples
• “Sort by Priority” on page 2-6

6 Learning More About SimEvents Software

6-4

Livelock Prevention

Large Finite Numbers of Simultaneous Events
Simultaneous events are events that occur at the same simulation clock time. Events
scheduled on the event calendar for times T and T+Δt are considered simultaneous if 0 ≤
Δt ≤ 128*eps*T, where eps is the floating-point relative accuracy in MATLAB software
and T is the simulation time. If your simulation creates a large number of simultaneous
events, this number might be an indication of an unwanted livelock situation. In this
situation, a block returns to the same state infinitely often at the same time instant.
SimEvents software prevents livelock with these limits:

• SimEvents software limits the maximum number of simultaneous events per block to
5,000.

• SimEvents software limits the maximum number of simultaneous events per model to
100,000.

See Also

More About
• “Solvers for Discrete-Event Systems” on page 7-6

 Livelock Prevention

6-5

Save SimEvents Simulation Operating Point
This example shows how to save and restore the simulation state of a SimEvents model by
using Save final operating point check box and use it as an initial state for future
simulations. For more information about using Save final operating point, see “Save
and Restore Simulation Operating Point” (Simulink).

The Save final operating point check box is used to save the state of a simple queuing
system with an Entity Generator block, an Entity Queue block, an Entity Server block, and
an Entity Terminator block. The signal output port n displaying the number of entities
departed the Entity Queue block is connected to a Scope block. For more information
about performing basic tasks to create this model, see “Create a Discrete-Event Model”.
The only difference in the model is the placement of the scope.

1 Open the Entity Server Block Parameters dialog box. Set the Service time value to
2.

The queue length increases throughout the simulation because service time is larger
than the entity intergeneration time.

2 From the Simulink Toolstrip, select Modeling tab and Model Settings. In the
Configuration Parameters dialog box, in the Data Import/Export pane, select the
Final states check box with the variable name xFinal and select the Save final
operating point check box.

6 Learning More About SimEvents Software

6-6

3 Simulate the model and open the Scope block. Observe that the final queue length is
6.

The queue length increases, with spikes at times 2, 4, 6, 8, and 10 because the
Service time value of the Entity Server block is 2. The entity in the Entity Server
block departs, and the entity that arrives at the Entity Queue block immediately
advances to the Entity Server block.

 Save SimEvents Simulation Operating Point

6-7

4 In the Configuration Parameters dialog box, select the Initial state check box and
specify the variable name as xFinal.

xFinal is used as an initial state for the next simulation.

6 Learning More About SimEvents Software

6-8

5 Increase the simulation time to 20.

Set the simulation time larger than 10 to observe simulation with the saved initial
simulation state.

6 Simulate the model. Open the Scope block. Observe that the simulation starts from
the queue length 6, which is the final state of the previous simulation.

 Save SimEvents Simulation Operating Point

6-9

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

6 Learning More About SimEvents Software

6-10

Related Examples
• “Solvers for Discrete-Event Systems” on page 7-6
• “Debug SimEvents Models” on page 12-2
• “Manage Entities Using Event Actions”

 See Also

6-11

Example Model to Count Simultaneous Departures from
a Server

This example shows how to count the simultaneous departures of entities from a server.
Use the Number of entities departed, d statistic from the Entity Server block to learn
how many entities have departed the block. The output signal also indicates when
departures occurred. This method of counting is cumulative throughout the simulation.

6 Learning More About SimEvents Software

6-12

Example Model for Noncumulative Entity Count
This example shows how to count entities, which arrive to an Entity Terminator block, in a
noncumulative way by resetting the counter at each time instant.

 Example Model for Noncumulative Entity Count

6-13

Example Model for Discouraged Arrival
This example shows a queuing system in which feedback influences the arrival rate. The
goal of the feedback loop is to stabilize the entity queue by slowing the entity generation
rate of the Entity Generator block as more entities accumulate in the Entity Queue block
and the Entity Server block.

6 Learning More About SimEvents Software

6-14

A Simple Example of Generating Multiple Entities
In this example, you can simultaneously generate multiple entities at the start of the
simulation. You can then observe the behavior of the model from the output of the
Dashboard Scope block.

 A Simple Example of Generating Multiple Entities

6-15

A Simple Example of Event-Based Entity Generation
In this example, you generate entities based on the message arrival to the Entity
Generator block.

6 Learning More About SimEvents Software

6-16

Serve Preferred Customers First
In this example, two types of customers enter a queuing system. One type, considered to
be preferred customers, are less common but require longer service. The priority queue
places preferred customers ahead of nonpreferred customers. The model plots the
average system time for the set of preferred customers and separately for the set of
nonpreferred customers in a Dashboard Scope block.

 Serve Preferred Customers First

6-17

Find and Examine Entities
This example shows how to use the Entity Find block to find and examine entities at their
location. In this example, the block finds entities that are tagged with a resource from the
Resource Pool block.

Model Description

• The top model represents the flow of entities that acquire a Resource1 resource.

• By default, the Entity Find block finds the entities having Resource1 tag.

• Every time the Trigger Entity Generator generates an entity, the Entity Find block is
triggered to find entities.

Simulation Results

Simulate the model and observe the Scope blocks labeled as Terminated Entities and
Number of Found Entities. The number of terminated entities is 10.

6 Learning More About SimEvents Software

6-18

The number of found entities by the Entity Find block is also 10. This is because every
generated entity acquires a Resource1 tag and no entities are blocked in the model.

 Find and Examine Entities

6-19

You can also modify and extract found entities. For more information, see “Find and
Extract Entities in SimEvents Models” on page 4-10.

See Also
Entity Find | Resource Acquirer | Resource Pool

More About
• “Find and Extract Entities in SimEvents Models” on page 4-10

6 Learning More About SimEvents Software

6-20

Extract Found Entities
You can use the Entity Find block to find entities and extract them from their location to
reroute. In this example, 3 entities found in the previous example are extracted from the
system to be terminated.

 Extract Found Entities

6-21

Trigger Entity Find Block with Event Actions
You can trigger the Entity Find block with event actions. In this example, the Entity Find
block is triggered when an entity enters the Entity Server block. Modify the previous
example by removing the Trigger Entity Generator and by adding the Entity Output
Switch, Entity Server1, Entity Terminator2 and Scope blocks to the model and connect
them as shown.

6 Learning More About SimEvents Software

6-22

Build a Firewall and an Email Server
You can use the Entity Find block to monitor multiple blocks in a model, to examine, and
to extract entities.

This example represents an email server with a firewall to track, monitor, and discard
harmful emails before they reach the user. In the model, emails are generated using an
Entity Generator block. In the Firewall component, all emails are classified as harmful for
instant discarding, suspicious for monitoring, or safe based on their source. Harmful
emails are tagged with a DiscardTag resource from the Resource Pool block and
instantly discarded from the system. Suspicious emails are tagged with MonitorTag and
tracked throughout the system for suspicious activity. If a suspicious activity is detected,
the email is discarded before it reaches the user. Safe emails are not monitored or
discarded.

 Build a Firewall and an Email Server

6-23

Implement the Custom Entity Storage Block
This example shows how to implement a discrete-event System Object™ using a MATLAB
Discrete-Event system block. The model also includes an Entity Generator block and an
Entity Terminator block. The custom block accepts entities and forwards them with a
delay of 4.

6 Learning More About SimEvents Software

6-24

Implement the Custom Entity Storage Block with
Iteration Event

This example shows how to implement a discrete-event System Object™ which represents
a custom entity storage block with an iteration event. The model also includes an Entity
Generator block that generates Wheels with various Diameter values.

 Implement the Custom Entity Storage Block with Iteration Event

6-25

Implement the Custom Entity Storage Block with Two
Timer Events

This example shows how to implement a discrete-event System Object™ which represents
a custom entity storage block with two timer events. The model also includes an Entity
Generator block that generates entities and two Entity Terminator blocks.

6 Learning More About SimEvents Software

6-26

Implement the Custom Entity Generator Block
This example shows how to implement a discrete-event System Object™ which represents
a custom entity generator block. The custom generator block also assigns priority values
and data to each generated entity. The priority values are acquired from the incoming
signal from the Ramp block. The model also includes an Entity Terminator block.

 Implement the Custom Entity Generator Block

6-27

Implement the Custom Entity Storage Block with Two
Storages

This example shows how to implement a discrete-event System Object™ which represents
a custom entity storage block with two storages. The model also includes two Entity
Generator blocks to generate two types of entities and an Entity Terminator block.

6 Learning More About SimEvents Software

6-28

Use SimEvents with Simulink

• “Working with SimEvents and Simulink” on page 7-2
• “Solvers for Discrete-Event Systems” on page 7-6
• “Model Simple Order Fulfilment Using Autonomous Robots” on page 7-9

7

Working with SimEvents and Simulink
You can exchange data between SimEvents and Simulink environments. However, time-
based signals and SimEvents signals have different characteristics.

Exchange Data Between SimEvents and Simulink
Use Simulink Function blocks in SimEvents models:

• To read or write attributes of entities.
• To send messages that trigger other events.
• To exchange data between event and time domain sections of a model.

Use Message Send and Receive blocks to send and receive messages between Simulink
and SimEvents blocks.

Time-Based Signals and SimEvents Block Transitions
Time-based signals and SimEvents signals have different characteristics. Here are some
indications that a time-based signal is automatically converted into a SimEvents signal, or
conversely:

• You want to connect a time-based signal to an input port of a SimEvents block.
• You are using data from a SimEvents block to affect time-based dynamics.
• You want to perform a computation involving both time-based signals and SimEvents

output.

When the transition occurs, a capital E appears on the line.

SimEvents Support for Simulink Subsystems
You can use SimEvents blocks (discrete-event blocks) without restriction in Simulink
Virtual Subsystems, and in Simulink Nonvirtual Subsystems, observing some specific
guidelines.

For more information about Simulink subsystems, see Subsystem, Atomic Subsystem,
Nonvirtual Subsystem, CodeReuse Subsystem.

7 Use SimEvents with Simulink

7-2

Discrete-Event Blocks in Virtual Subsystems

You can use discrete-event blocks without restriction in a virtual subsystem.

Discrete-Event Blocks in Nonvirtual Subsystems

When you use discrete-event blocks in an atomic subsystem, follow these guidelines:

• The entire discrete-event subsystem, which includes all discrete-event blocks, must
reside entirely within the atomic subsystem. You cannot route entities into, or out of,
the atomic subsystem.

• If you want to connect two or more atomic subsystems that contain discrete-event
blocks, each atomic subsystem must meet all the preceding conditions.

For more information about atomic subsystems, see Subsystem, Atomic Subsystem,
Nonvirtual Subsystem, CodeReuse Subsystem.

Discrete-Event Blocks in Variant Subsystems

You can use discrete-event blocks in a variant subsystem. The software permits both
entities and time-based signals to enter and depart a virtual variant.

However, if you use an atomic subsystem as a variant, or within a variant, then that
atomic subsystem must obey the rules for using discrete-event blocks in nonvirtual
subsystems. These rules are described in “Discrete-Event Blocks in Nonvirtual
Subsystems” on page 7-3. An atomic subsystem is the only type of nonvirtual subsystem
that can contain discrete-event blocks, even when the nonvirtual subsystem is contained
within a variant subsystem.

The SimEvents software does not support the selection of the Analyze all choices
during update diagram and generate preprocessor conditionals check box for these
blocks:

• Variant Subsystem
• Variant Sink
• Variant Source

 Working with SimEvents and Simulink

7-3

Save Simulation Data
Behavior of the To Workspace Block

The To Workspace block writes event-based signals to the MATLAB workspace when the
simulation stops or pauses. One-way to pause a running simulation is to select
Simulation > Pause.

Send Queue Length to the Workspace

The example shows one way to write the times and values of signals to the MATLAB
workspace. In this case, the signal is the n output from an Entity Queue block, which
indicates how many entities the queue holds.

You can use different time formats in the To Workspace block to display the data.

To record entities and their attributes passing along an entity line, consider connecting a
To Workspace block to that entity line.

Data Logging

You can log data from your SimEvents model using Simulink. For more information, see
“Save Run-Time Data from Simulation” (Simulink).

See Also
Message Receive | Message Send | Simulink Function

Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components”
• “Events and Event Actions” on page 1-2

7 Use SimEvents with Simulink

7-4

• “Generate Entities When Events Occur” on page 1-12

More About
• “Solvers for Discrete-Event Systems” on page 7-6

 See Also

7-5

Solvers for Discrete-Event Systems
In this section...
“Variable-Step Solvers for Discrete-Event Systems” on page 7-6
“Fixed-Step Solvers for Discrete-Event Systems” on page 7-7

Depending on your configuration, you can use both variable-step and fixed-step solvers
with discrete-event systems. To choose solver settings for your model, navigate to the
Solver pane of the model Configuration Parameters dialog box.

When choosing a solver type for your model, use the following guidelines:

• If your model contains only event-based computation and excludes continuous and
discrete time-based computation, choose the variable-step, discrete solver. In this
case, if you select a variable-step continuous solver, the software detects that your
model does not contain any blocks with continuous states (Simulink blocks) and
automatically switches the solver to discrete (no continuous states). When
the software makes this change, it notifies you with a message in the MATLAB
command window.

• If your discrete-event system is within a Simulink model that also contains time-based
modeling, choose either a variable-step or fixed-step solver, depending on your
simulation requirements. For each solver type, the following sections describe the
behavior of discrete-event systems when contained within such models.

Variable-Step Solvers for Discrete-Event Systems
If your discrete-event system is within a Simulink model that contains time-based
modeling, and you choose a variable-step solver for the model, the Simulink solver has a
major time step each time the discrete-event system processes events.

The following graphic illustrates the behavior of the variable-step solver when used with a
discrete-event system contained within a Simulink model.

7 Use SimEvents with Simulink

7-6

Fixed-Step Solvers for Discrete-Event Systems
If you have a discrete-event system within a Simulink model that includes time-based
modeling, you can choose a fixed-step solver for the model.

When you use a fixed-step solver, the simulation still executes events in the discrete-event
system at the times at which they occur. However, these events do not cause the Simulink
solver to have sample hits at those times. The software insulates the discrete-event
system from the time-based portions of the Simulink model.

The following graphic illustrates the behavior of the fixed-step solver when used with a
discrete-event system.

 Solvers for Discrete-Event Systems

7-7

See Also

More About
• “Compare Solvers” (Simulink)
• “Working with SimEvents and Simulink” on page 7-2

7 Use SimEvents with Simulink

7-8

Model Simple Order Fulfilment Using Autonomous
Robots

This example models a warehouse with autonomous robots for order management. The
goal of the example is to show how to facilitate complex models created with Simulink,
Stateflow, and SimEvents components and their communication via messages. See “View
Differences Between Stateflow Messages, Events, and Data” (Stateflow) for more
information about messages.

Order Fulfilment Model
Order fulfilment model has two major components

• The Order Queue component represents an online order queue with the blocks from
the SimEvents® library.

• The Warehouse component represents delivery of order items by autonomous robots.
It uses blocks from Simulink® and SimEvents® libraries and a Stateflow® chart. The
chart requires a Stateflow® license.

 Model Simple Order Fulfilment Using Autonomous Robots

7-9

In this model, an online order for multiple items arrives at the Order Queue component.
The locations of the ordered items are communicated from the Processing Order block to
the autonomous robots in the Warehouse component. Three robots are assigned to three
aisles. A robot picks up an item from its aisle location and returns it to its initial location
for delivery. An order can have one, two, or three items. When all ordered items are
delivered by the robots, the order is complete and a new order arrives. Until an order is
complete, no new orders are received to the Order Queue component.

Warehouse Component
The warehouse has three aisles. The first aisle contains clothing items, the second aisle
contains toys, and the third aisle contains electronics. Three delivery robots are identical
and their dynamics are driven by a linear time-invariant system that is controlled by a
tuned PID controller. For instance, the Aisle1 subsystem block consists of a Robot1
subsystem and a Discrete-Event Chart block as a scheduler.

7 Use SimEvents with Simulink

7-10

Robot1 Subsystem

The Robot1 subsystem has a generic feedback control loop with the dynamics of the robot
represented by the State-Space block and the PID controller.

The Robot1 subsystem is designed to track a reference signal from the In1 block, which is
the out signal from the Discrete-Event Chart block. The system compares the input value
with the output from the State-Space block and the difference between signals is fed to
the PID Controller block.

For instance, if the signal from the In1 block is a constant with value 10, starting from the
initial state 0, the output of the system converges to 10.

 Model Simple Order Fulfilment Using Autonomous Robots

7-11

In the x-axis and y-axis, Robot1 moves as follows.

• Robot1 is initially at x1 and y1 = 0 coordinate. For item pickup and delivery, it moves
only on the y-axis and its x1 coordinate remains the same.

• Each order item in Aisle1 has a yaisle coordinate on the y-axis. yaisle becomes the
constant input reference signal to be tracked by Robot1 subsystem.

• When Robot1 subsystem reaches yaisle, it picks up the order item and autonomously
reruns back to y1 = 0 location for delivery.

The scope displays an example trajectory for Robot1 subsystem, which receives a yaisle
value 10 as the constant reference input at simulation time 265. When the distance
between the robot's location and y = 10 is 0.1, reference input signal is 0 and the robot
returns to its initial location for delivery.

7 Use SimEvents with Simulink

7-12

Robot2 subsystem and Robot3 subsystem have identical dynamics and behavior for the
item delivery in Aisle2 subsystem and Aisle3 subsystem. Their x coordinates are x2 and x3
and they also move on the vertical y-axis.

Scheduler

In the previous example trajectory, Robot1 has three states. The Discrete-Event Chart
block is used to schedule the transitions between these robot states.

• A robot waits in the Wait state, until it receives a yaisle item coordinate. Robot1
subsystem is in the Wait state, until the simulation time is 265.

• A robot transitions to the PickUp state, when there is an incoming message carrying
the yaisle value of an item to the Discrete-Event Chart block. This value is assigned to
out, which is the output signal from the Discrete-Event Chart block. The out signal is

 Model Simple Order Fulfilment Using Autonomous Robots

7-13

fed to the Robot1 subsystem as the input signal In1 to be tracked and the robot moves
towards the yaisle item location. Robot1 subsystem transitions to the PickUp state at
time 265.

• When a robot is 0.1 units away from yaisle, it picks up the item. Then, the robot
transitions to a Deliver state. The out signal becomes 0 and the robot returns back
to y = 0 for delivery. At the simulation time 290, Robot1 subsystem is 0.1 unit away
from y = 10 and transitions to the Deliver state.

• When a robot returns and it is 0.1 units away from y = 0, it transitions to the Wait
state. At around 320, Robot1 subsystem delivers the item and transitions back to the
Wait state.

Order Package Preparation

1 When a robot delivers its item, the item is sent to generate the order package. This
behavior is represented by the Message Send block that generates a message inside

7 Use SimEvents with Simulink

7-14

the Item from Aisle Simulink Function block. Then, the generated message enters the
Entity Queue block.

2 A Composite Entity Creator block waits for all three items from the three Entity
Queue blocks to create a composite entity that represents the order.

To complete the order, all of the items from the three aisles are required to be
delivered.

3 When all the items are delivered, the order is complete and it arrives at the Package
Ready block.

4 The entry of the order to the Package Ready block triggers the Simulink Function1
block to generate a message and to open the gate for order termination.

5 When the order is terminated, a new order arrives at the Processing Order block
which restarts the delivery process.

Until an order is complete, no new orders are received, so the robots that deliver their
items wait for the order to be completed.

Order Queue Component
The order queue block is a simple queuing system composed of an Entity Generator,
Entity Queue, Entity Server, Entity gate, and Entity Terminator block. For more
information about creating a simple queuing system, see “Manage Entities Using Event
Actions”.

1 Entity Generator block randomly generates orders. The intergeneration time is drawn
from an exponential distribution with mean 100.

2 Each generated entity has three randomly generated attributes aisle1, aisle2, and
aisle3 that represent the yaisle coordinates of the items in Aisle1, Aisle2, and Aisle3
subsystems.

 Model Simple Order Fulfilment Using Autonomous Robots

7-15

entity.Aisle1 = randi([1,30]);
entity.Aisle2 = randi([1,30]);
entity.Aisle3 = randi([1,30]);

It is assumed that the items are located vertically between y = 1 and y = 30.
3 The arrival of the order to the Entity Server block activates the robots by

communicating the items' yaisle coordinates. Entering this MATLAB code in the
Entry action field.

LocateAisle1(entity.Aisle1);
LocateAisle2(entity.Aisle2);
LocateAisle3(entity.Aisle3);

Calling the LocateIsle() function communicates the yaisle coordinate of an item to
the corresponding robot.

4 The order waits in the Entity Server block until the Entity Gate block opens.
5 When all items are delivered, the order package enters the Package Ready block and

its entry calls the Simulink Function1 block through the function ordercomplete().
The Simulink Function1 block generates a message to open the gate.

6 When the gate opens, the order is terminated and a new order arrives at the Entity
Server block.

Results
Inspect the order throughput from the Order Queue.

1 Increase the simulation time to 1000.
2 Simulate the model and observe that the scope displays 7 as the total number of

completed orders.

7 Use SimEvents with Simulink

7-16

See Also
Discrete-Event Chart | Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components”

More About
• “Working with SimEvents and Simulink” on page 7-2
• “Solvers for Discrete-Event Systems” on page 7-6

 See Also

7-17

Build Discrete-Event Systems Using
Charts

• “Discrete-Event Stateflow Charts” on page 8-2
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-4
• “Event Triggering in Discrete-Event Charts” on page 8-6
• “Discrete-Event Chart Precise Timing” on page 8-9
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-13
• “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-25

8

Discrete-Event Stateflow Charts
The Discrete-Event Chart block is similar to a Stateflow chart but is used for discrete
events.

Why Use the Discrete-Event Chart
A Stateflow Discrete-Event Chart block can receive, process, and send SimEvents entities.
Using Stateflow Discrete-Event Chart block to create SimEvents systems lets you take
advantage of the graphical state transition and MATLAB action language used in
Stateflow software. The Discrete-Event Chart block can be used in a similar fashion to the
Stateflow Chart.

The distinguishing characteristic of the Discrete-Event Chart block is that it executes in
an event-based rather than time-based fashion. The Discrete-Event Chart block provides
these advantages for discrete-event modeling:

• Precise timing — The time resolution for occurrence of events can be arbitrarily
precise and is not limited by the sample time of the model.

For more information, see “Discrete-Event Chart Precise Timing” on page 8-9.
• Trigger on arrival — A Discrete Event Chart block executes immediately on message

arrival. It does not wait for the next sample time hit.

For more information, see “Trigger a Discrete-Event Chart Block on Message Arrival”
on page 8-13.

• Variable execution order — A Discrete Event Chart block does not have a fixed sorted
execution order. The order of execution depends on the run-time conditions of the
model.

For more information, see “Dynamic Scheduling of Discrete-Event Chart Block” on
page 8-25.

• Multiple executions per time step — A Discrete Event Chart block can execute zero or
multiple times in a single time step.

For more information, see “Dynamic Scheduling of Discrete-Event Chart Block” on
page 8-25.

8 Build Discrete-Event Systems Using Charts

8-2

Note With SimEvents software, you can view, edit, and simulate your Discrete Event
Chart custom block within a SimEvents example model. However, to save the model you
must have a Stateflow license.

For new models, without a Stateflow license, you can view and edit the model, but cannot
simulate or save it.

The entities you use with discrete-event charts can be bus objects or anonymous entities.

See Also
Discrete Event Chart

Related Examples
• “Specify Properties for Stateflow Charts” (Stateflow)

More About
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-4
• “Event Triggering in Discrete-Event Charts” on page 8-6

 See Also

8-3

How Discrete-Event Charts Differ from Stateflow Charts

In this section...
“Discrete Event Chart Properties” on page 8-4
“Define Message (Entity) Input and Output” on page 8-5
“Define Local Messages” on page 8-5
“Specify Message Properties” on page 8-5

Discrete Event Chart Properties
Discrete event chart properties allow you to specify how your chart interfaces with the
Simulink model.

Set Properties for a Chart

To specify properties for a single chart:

1 Double-click a chart.
2 Right-click an open area of the chart and select Properties.

All charts provide general and documentation properties.
3 Observe that the chart allows the configuration of only these properties on the

General tab. It also supports the Fixed-point properties and Documentation tabs.

• Name
• Machine
• Saturate on integer overflow
• Create data for monitoring
• Lock Editor

Notes:

• SimEvents software supports only MATLAB action language
• SimEvents always supports variable-size arrays

8 Build Discrete-Event Systems Using Charts

8-4

Define Message (Entity) Input and Output
A discrete-event chart uses SimEvents entities the same way that Stateflow software uses
messages. As with Stateflow charts, you can add message (entity) input and output using
the Stateflow Editor or Model Explorer. Based on the desired scope, select one of the
following options:

Scope Menu Option
Input Message (Entity) Input from Simulink
Output Message (Entity) Output from Simulink

Define Local Messages
As with Stateflow charts, you can define local messages for the discrete-event chart using
the Stateflow Editor or Model Explorer. To add a local message for the discrete-event
chart, select Chart > Add Other Elements > Local Message (Entity)....

Specify Message Properties
Discrete-event charts have this additional property for output messages and local
messages:

Message Input Port
Properties

Description

Priority If two message events occur at the same time, to decide which
to process first, the discrete-event chart uses this priority. A
smaller numeric value indicates a higher priority.

See Also
Discrete Event Chart

More About
• “Discrete-Event Stateflow Charts” on page 8-2
• “Event Triggering in Discrete-Event Charts” on page 8-6

 See Also

8-5

Event Triggering in Discrete-Event Charts
In this section...
“Event Triggering” on page 8-6
“Message Triggering” on page 8-6
“Temporal Triggering” on page 8-7

Event Triggering
SimEvents discrete-event system charts support these events in the chart:

• Message
• Temporal
• Local
• Implicit (enter, exit, on, change)

SimEvents discrete-event system charts do not support these events in the chart:

• Conditions without event
• during, tick
• Event input from Simulink
• Event output to Simulink

Note The SimEvents event calendar displays and prioritizes message, and temporal
events. Events of these types execute according to the event calendar schedule.

The event calendar does not display or prioritize local and implicit events. In the
SimEvents environment, these events execute as dependent events of message or
temporal events. For parallel states, local and implicit events execute in the state
execution order.

Message Triggering
When a message arrives at a message input or local queue, the discrete-event chart
responds to the message as follows:

8 Build Discrete-Event Systems Using Charts

8-6

• If the discrete-event chart is in a state of waiting for a message, the discrete-event
chart wakes up and makes possible transitions. The chart immediately wakes up in
order of message priority, processing the message with the highest priority first.

• If the discrete-event chart does not need to respond to the arriving message, the
discrete-event chart does not wake up and the message is queued.

Temporal Triggering
In a discrete-event chart, you can use both event-based and absolute time-based temporal
logic operators. When using absolute time-based temporal logic operators, the SimEvents
software honors the specified time delay value exactly. For example, the activation of the
temporal logic 'after(3,sec)' causes the chart to wake up after three seconds of
simulation clock time.

When using absolute-time temporal logic operators, observe these differences from the
Stateflow environment.

Operator Description
after You can use as event notation in both state

actions and transitions.

 Event Triggering in Discrete-Event Charts

8-7

Operator Description
before When you use as event notation of a

transition, you cannot use additional
condition notations on this transition. You
can apply a connective junction to check
additional conditions, as long as the
connective junction has one unconditional
transition.

In conditional notation, the software supports both after and before.

See Also
Discrete Event Chart

More About
• “Discrete-Event Stateflow Charts” on page 8-2
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-4

8 Build Discrete-Event Systems Using Charts

8-8

Discrete-Event Chart Precise Timing
This example shows the precise timing that a Discrete-Event Chart block executes as it
generates parts in a facility. The behavior of the Discrete-Event Chart and the Stateflow®
blocks are compared. Both blocks require a Stateflow® license. Using a Discrete-Event
Chart block, the example shows that the temporal resolution of events can be arbitrarily
precise and independent from the model sample time.

In this example, an entity represents a part generated in pi seconds. The solver is set to
Fixed-step with step size 1, and for the Stateflow® Chart block, the Enable Super
Step Semantics check box is selected. For more information, see “Super Step
Semantics” (Stateflow).

Model Description

In this model, the Part Generation block is created using a Discrete-Event Chart block and
the Part Generation Chart is created using a Stateflow® Chart block. Both blocks contain
the same state transition model, including two states, CreatePart and WaitForQA.

• The CreatePart state represents the production of a Part in pi seconds.

• The WaitForQA state represents the wait for the quality control department for
Part's validation.

 Discrete-Event Chart Precise Timing

8-9

Enable the sample time annotation and simulate the model. Observe that the sample time
for the Discrete-Event Chart block reflects the event-based sampling.

Simulation Results

Observe that Part is generated by the Discrete-Event chart after precisely 3.14 seconds,
independent from the simulation step size.

8 Build Discrete-Event Systems Using Charts

8-10

Observe that Part is generated by the Stateflow® Chart after 4 seconds. This is due to
the fixed step size 1 , which causes the Stateflow® Chart block to wait until the next
simulation step.

 Discrete-Event Chart Precise Timing

8-11

See Also
Discrete-Event Chart

More About
• “Why Use the Discrete-Event Chart” on page 8-2
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-13
• “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-25
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-4

8 Build Discrete-Event Systems Using Charts

8-12

Trigger a Discrete-Event Chart Block on Message Arrival
This example shows how to trigger a Discrete-Event Chart Block on the message arrival
when generating parts in a facility and performing quality assurance. In the example,
behaviors of a Discrete-Event Chart and Stateflow® Chart blocks are compared. Both
blocks require a Stateflow® license. The example shows that, a Discrete-Event Chart
block executes immediately upon the arrival of a message and does not wait for the next
sample time hit.

In this example, a part is generated in the Part Generation block and it is sent to the
Quality Assurance block for the Part's quality control. After the evaluation, the Quality
Assurance block outputs the validated part.

The model is further modified to send the validated part back to the Part Generation block
from which it is shipped to the customer. For both models in this example, the solver is set
to Fixed-step with step size 1, and for all the Stateflow® Chart blocks, the Enable
Super Step Semantics option is selected. For more information, see “Super Step
Semantics” (Stateflow).

Model Description

In the PartQualityEvaluationModel model, the Part Generation is modeled by a
Discrete-Event Chart block, and the Part Generation Chart is modeled by a Stateflow®
Chart block. Both blocks contain the same state transition logic including two states,
CreatePart and WaitForQA.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-13

• The CreatePart state represents the production of a Part in pi seconds.

• The WaitForQA state represents the wait for the quality control department for the
Part's validation.

Similarly, Quality Assurance is modeled by a Discrete-Event Chart block and Quality
Assurance Chart is modeled by using a Stateflow® Chart block. Both blocks contain the
same state transition logic including three states, WaitForPart, Evaluating, and
Finished.

• The WaitForPart state represents the wait for the generated Part.

• When the Part arrives, the block transitions to the Evaluating state to represent the
start of the evaluation process.

• After 1 second, the evaluation is complete and the block transitions to Finished
state.

• The Part departs the block and the block transitions back to the WaitForPart state.

8 Build Discrete-Event Systems Using Charts

8-14

Simulation Results

Simulate the model. Observe the Scope block connected to the Quality Assurance block.
The block outputs the Part after 4.14 seconds, which is the sum of 3.14 seconds
required for the Part's generation and 1 s for its quality control.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-15

Observe the Scope block that is connected to the Quality Assurance Chart block. The
block outputs the Part after 5 seconds, which is the sum of 4 seconds for the Part's
generation and 1 second for its quality control as a result of fixed step size 1. This
difference is based on the precise timing property of the Discrete-Event chart. For more
information, see “Discrete-Event Chart Precise Timing” on page 8-9.

8 Build Discrete-Event Systems Using Charts

8-16

Further Modify the Model

Open PartQualityControlShip which is the modified the model that sends the processed
Part back to the Part Generation block for shipment. In the PartQualityControlShip
model, the modified Part Generation and Part Generation Chart blocks contain the same
set of additional states and transitions.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-17

In the Part Generation and Part Generation Chart Blocks:

• The Review state represents the review of the quality control report for the
ProcessedPart. When the ProcessedPart returns, the block transitions to the
Review state.

• When the review is complete after sqrt(2) seconds, the block transitions to the Ship
state.

• When the processed Part is shipped to the customer, the block transitions back to the
CreatePart state to generate a new part.

8 Build Discrete-Event Systems Using Charts

8-18

Simulation Results

Simulate the modified model. Observe that the processed Part departs the Part
Generation block after 5.55 seconds, which is the sum of 4.14 required for part
generation and quality control and 1.41 for the review before shipment.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-19

Observe that the processed Part departs the Part Generation Chart after 8 seconds, which
is the sum of 5 required for part generation and quality control, 2 for the review before
shipment, and 1 for the block's static scheduling.

8 Build Discrete-Event Systems Using Charts

8-20

Observe the Sequence Viewer block. Each time grid row bordered by two blue lines
contains events that occur at the same simulation time. The Sequence Viewer window
shows events vertically, ordered in time, and uses a combination of linear and nonlinear
displays. For more information, see “Use the Sequence Viewer Block to Visualize
Messages, Events, and Entities” on page 5-32.

The ProcessedPart is sent from Quality Assurance block to Part Generation at 4.1 and
the Part's arrival triggers the Discrete-Event Chart block immediately. At time 5, the
ProcessedPart is sent from the Quality Assurance Chart to the Part Generation Chart.
However, the Part Generation Chart waits for the next sample time hit at 6 after the
message arrival to execute.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-21

In the order, Part Generation Chart executes first and Quality Assurance Chart executes
second in one sample time hit. That is the reason why Part Generation Chart block waits
for the next sample time hit to execute as the first block in the order.

8 Build Discrete-Event Systems Using Charts

8-22

See Also
Discrete-Event Chart

 See Also

8-23

More About
• “Why Use the Discrete-Event Chart” on page 8-2
• “Discrete-Event Chart Precise Timing” on page 8-9
• “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-25

8 Build Discrete-Event Systems Using Charts

8-24

Dynamic Scheduling of Discrete-Event Chart Block
This example shows how to use the dynamic scheduling that the Discrete-Event Chart
block provides. A Discrete Event Chart block can execute zero or multiple times in a time
step. The example compares the behaviors of the Discrete-Event Chart and Stateflow®
Chart blocks. Both blocks require a Stateflow® license.

In this example, a bicycle part is generated every second by the Part Generation block. Its
quality control is simultaneously performed when the part is in the assembly line. The
quality control process takes 1 s to restart. This process is modeled by the Quality
Assurance block.

The solver is set to Fixed-step with step size 1, and for all the Stateflow® Chart blocks,
the Enable Super Step Semantics option is selected. For more information, see
“Super Step Semantics” (Stateflow).

Model Description

In the model, Part Generation is modeled by a Discrete-Event Chart block and Part
Generation Chart is modeled by a Stateflow® Chart block. Both blocks contain the same
state transition logic including three states, CreatePart, WaitForQA, and Ship.

 Dynamic Scheduling of Discrete-Event Chart Block

8-25

• After 1 s, a Part is generated and the Chart transitions from the CreatePart to
WaitForQA.

• The quality control is simultaneous and the ProcessedPart returns back
immediately. The block transitions to the Ship state and after the ProcessedPart is
shipped to the CreatePart state.

Similarly, the Quality Assurance is modeled by a Discrete-Event Chart while the Quality
Assurance Chart is modeled by a Stateflow® Chart block. Both blocks contain the same
state transition logic including three states, WaitForPart, Evaluating, and Finished.

8 Build Discrete-Event Systems Using Charts

8-26

• The WaitForPart state represents the wait for the generated Part. When the Part
arrives, the block transitions to the Evaluating state.

• Then the ProcessedPart is immediately sent back to Part Generation and the block
transitions to the Finished state.

• After 1 s, the block returns to the WaitForPart state.

Simulation Results

• Simulate the model. Observe the Scope block connected to the Part Generation block.
The Parts depart the facility every second.

 Dynamic Scheduling of Discrete-Event Chart Block

8-27

Observe the Scope block connected to the Part Generation Chart block, which displays
that the parts are generated in every two seconds.

The difference is due to the dynamic scheduling property of the Discrete-Event Chart
block. For instance, observe the Sequence Viewer block. Each time grid row, bordered by
two blue lines, contains events that occur at the same simulation time. For more
information, see “Use the Sequence Viewer Block to Visualize Messages, Events, and
Entities” on page 5-32.

In the second and third simulation time step, the static scheduling of the Stateflow®
Chart blocks causes their execution with a fixed order, in which the Part Generation Chart

8 Build Discrete-Event Systems Using Charts

8-28

labeled 1 is executed first and the Quality Assurance Chart labeled 2 is executed second
for each time step. The sequence is 1,1,2 for the second time step and 1,2,2 for the
third time step.

The dynamic scheduling property of the Discrete-Event Chart allows multiple executions
of the Part Generation and Quality Assurance blocks at each time step with the changing
order. For example, in the second time step, the order becomes 2,1,2,2,1,1.

 Dynamic Scheduling of Discrete-Event Chart Block

8-29

See Also
Discrete-Event Chart

8 Build Discrete-Event Systems Using Charts

8-30

More About
• “Why Use the Discrete-Event Chart” on page 8-2
• “Discrete-Event Chart Precise Timing” on page 8-9
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-13

 See Also

8-31

Build Discrete-Event Systems Using
System Objects

• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Delay Entities with a Custom Entity Storage Block” on page 9-11
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-17
• “Custom Entity Storage Block with Multiple Timer Events” on page 9-23
• “Custom Entity Generator Block with Signal Input” on page 9-31
• “Build a Custom Block with Multiple Storages” on page 9-39
• “Create a Custom Resource Acquirer Block” on page 9-49
• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65
• “Customize Discrete-Event System Behavior Using Events and Event Actions”

on page 9-69
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-75
• “Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory

Blocks” on page 9-80

9

Create Custom Blocks Using MATLAB Discrete-Event
System Block

In this section...
“Entity Types, Ports, and Storage in a Discrete-Event System Framework” on page 9-3
“Events” on page 9-6
“Implement a Discrete-Event System Object with MATLAB Discrete-Event System Block”
on page 9-7

Discrete-Event System objects let you implement custom event-driven entity-flow systems
using the MATLAB language. The MATLAB Discrete-Event System block enables you to
use discrete-event System objects to create a custom block in your SimEvents model. You
can author such discrete-event System objects via a set of MATLAB methods.

You can create a custom discrete-event System object from scratch that:

• Contains multiple entity storage elements, with each storage element containing
multiple SimEvents entities, and configure it to sort entities in a particular order.

• Has an entity or a storage element that can schedule and execute multiple types of
events. These events can model activities such as entity creation, consumption,
search, transmission, and temporal delay.

• Can accept entity/signal as input/output, produce entity and signal as outputs, and
support both built-in data types and structured/bus data types.

• Use MATLAB toolboxes for computation and scaling of complex systems.

The MATLAB Discrete-Event System block is similar to the MATLAB System block with
these differences:

• The resulting discrete-event System object is an instantiation of the
matlab.DiscreteEventSystem class rather than the matlab.System class.

• The matlab.DiscreteEventSystem has its own set of System object methods
particular to discrete-event systems.

• The matlab.DiscreteEventSystem also inherits a subset of the MATLAB System
methods. For a complete list of this subset, see “Create a Discrete-Event System
Object” on page 9-58.

9 Build Discrete-Event Systems Using System Objects

9-2

Entity Types, Ports, and Storage in a Discrete-Event System
Framework
An entity is a discrete object that the system processes. An entity has a type and the
entity type defines a class of entities that share a common set of data specifications and
run-time methods. Examples of data specifications include dimensions, data type, and
complexity.

Consider these guidelines when defining custom entity types using the
getEntityTypesImpl method:

• You can specify multiple entity types. Each type must have a unique name.
• An entity storage element, input port, and output port must specify the entity type

they work with.
• Specify or resolve common data specifications for an entity type. For example, an

input port and an output port with the same entity type must have the same data type.
• When forwarding an entity, the source and destination data specifications must be

same in these instances:

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-3

• From an input port to a storage element
• Between storage elements
• From a storage element to an output port

• Each entity type can share a common set of event action methods. When naming these
methods, to distinguish the entity type use this convention:

entitytypeAction

For example, if there are two entity types, car and truck, use method names such as:

carEntry
truckEntry

During simulation, an entity always occupies a unit of storage space. Such storage spaces
are provided by entity storage elements. A discrete-event System object can contain
multiple entity storage elements. Use the getEntityStorageImpl method to specify
storage elements. A storage space is a container with these properties:

• Entity type — Entity type this storage is handling.

9 Build Discrete-Event Systems Using System Objects

9-4

• Capacity — Maximum number of entities that the storage can contain.
• Storage type — Criteria to sort storage entities (FIFO, LIFO, and priority).
• Key name — An attribute name used as key name for sorting. This property is

applicable only when the storage type is priority.
• Sorting direction — Ascending or descending priority queues. This property is

applicable only when the storage type is priority.

You can access any entity at an arbitrary location of a storage and specify events.

Ports enable a discrete-event System object to exchange entities and data with other
blocks or model components. You can specify a variable number of input and output ports
using the getNumInputsImpl and getNumOutputsImpl methods. You can also specify
which ports are entity ports and the entity types for these ports. Use the
getEntityPortsImpl method to specify these port properties.

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-5

Events
You can schedule events for a discrete-event System object to execute. Events are
associated with user-defined actions. An event action defines a custom behavior by
changing state or entity values, and executing the next set of events.

You can use methods and functions to:

• Schedule events
• Define event actions in response to events
• Initialize events
• Cancel events

A MATLAB discrete-event System object can have these types of events:

• Storage events — You can schedule these events on a storage element. The actor is a
storage element.

9 Build Discrete-Event Systems Using System Objects

9-6

• You can generate a new entity inside a storage element.
• You can iterate each entity of a storage element.

• Entity events — You can schedule these events on an entity. Actor is an entity.

• You can delay an entity.
• You can forward an entity from its current storage to another storage or output

port.
• You can destroy the existing entity of a storage element.

For more information on using events and event actions, see “Customize Discrete-Event
System Behavior Using Events and Event Actions” on page 9-69.

Implement a Discrete-Event System Object with MATLAB
Discrete-Event System Block
To Implement a custom block by assigning a discrete-event System object, follow these
steps.

1 Open a new model and add the MATLAB Discrete-Event System block from the
SimEvents library.

2 In the block dialog box, from the New list, select Basic to create a System object
from a template.

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-7

Modify the template as needed and save the System object.

You can also modify the template and define Discrete-Event System objects from the
MATLAB Editor using code insertion options. By selecting Insert Property or Insert
Method, the MATLAB Editor adds predefined properties, methods, states, inputs, or
outputs to your System object. Use these tools to create and modify System objects
faster, and to increase accuracy by reducing typing errors.

3 If the System object exists, in the block dialog box, enter its name for the Discrete-
event System object name parameter. Click the list arrow to see the available
discrete-event System objects in the current folder.

The MATLAB Discrete-Event System block icon and port labels update to the icons
and labels of the corresponding System object. Suppose that you select a System
object named myServer in your current folder and generate a custom entity server
block that serves entities and outputs each entity through the output port. Then, the
block updates as shown in the model.

9 Build Discrete-Event Systems Using System Objects

9-8

Many different MATLAB System object functions allow you to capture the properties and
implement custom behaviors. The provided template is simplified, but you can add
complexity by editing event actions, introducing actions, and modifying parameters. The
object-oriented programming features of MATLAB System object enable you to scale your
model, and interface it with the graphical programming features of SimEvents.

These topics walk you through a complete workflow for creating custom blocks with
distinct functionalities.

1 “Delay Entities with a Custom Entity Storage Block” on page 9-11
2 “Create a Custom Entity Storage Block with Iteration Event” on page 9-17
3 “Custom Entity Storage Block with Multiple Timer Events” on page 9-23
4 “Custom Entity Generator Block with Signal Input” on page 9-31
5 “Build a Custom Block with Multiple Storages” on page 9-39
6 “Create a Custom Resource Acquirer Block” on page 9-49

For other examples of MATLAB Discrete-Event System block and discrete-event System
objects, type SimEvents Examples in the SimEvents Help browser.

To use provided custom blocks, in the SimEvents library, double-click the Design Patterns
block. The MATLAB Discrete-Event System category contains these design patterns:

Example Application
Custom Generator Implement a more complicated entity generator.
Custom Server Use a custom server.
Selection Queue Select a specific entity to output from a queue.

For more information, see “SimEvents Common Design Patterns”.

See Also
matlab.DiscreteEventSystem | matlab.System

More About
• “Delay Entities with a Custom Entity Storage Block” on page 9-11
• “Integrate System Objects Using MATLAB System Block” (Simulink)

 See Also

9-9

matlab:demo simulink simevents

• “Create a Discrete-Event System Object” on page 9-58
• “Customize Discrete-Event System Behavior Using Events and Event Actions” on

page 9-69

9 Build Discrete-Event Systems Using System Objects

9-10

Delay Entities with a Custom Entity Storage Block
This example shows how to use discrete-event System object methods to create a custom
entity storage block that has one input port, one output port, and one storage element.
The discrete-event System object is the instantiation of the
matlab.DiscreteEventSystem class, which allows you to use the implementation and
service methods provided by this class. Then, you use the MATLAB Discrete-Event System
block to integrate the System object into a SimEvents model.

The custom MATLAB Discrete-Event System block accepts an entity from its input port
and forwards it to its output port with a specified delay. The figure visualizes the block
using the discrete-event system framework.

To open the model and to observe the behavior of the custom block, see
CustomEntityStorageBlockExample.

Create the Discrete-Event System Object
1 Create a new script and inherit the matlab.DiscreteEventSystem class.

classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem
2 Add a custom description to the block.

% A custom entity storage block with one input, one output, and one storage.

3 Declare two nontunable parameters Capacity and Delay to represent the storage
capacity and the entity departure delay from the storage.

% Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;

 Delay Entities with a Custom Entity Storage Block

9-11

 % Delay
 Delay = 4;
 end

The parameters capture the properties of the block.

• Tunable parameters can be tuned during run time.
• Non-tunable parameters cannot be tuned during run time.

4 Specify these methods and set access to protected.
 methods (Access = protected)

 % Specify the number of input ports.
 function num = getNumInputsImpl(~)
 num = 1;
 end
 % Specify the number of output ports.
 function num = getNumOutputsImpl(~)
 num = 1;
 end
 % Specify a new entity type Car.
 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end
 % Specify Car as the entity type that is used in
 % input and output ports.
 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end
 % Specify the storage type, capacity, and connection to
 % the input and output ports.
 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 % First element of I indicates the entity storage index 1 that is
 % connected to input 1.
 I = 1;
 % First element of O indicates the entity storage index 1 that is
 % connected to output 1.
 O = 1;
 end

 end

Only one storage sorts cars in a first-in-first-out (FIFO) manner. The Capacity
parameter of the object defines the server capacity.

The method getEntityStorageImpl() also specifies the connections between the
ports and the storage, I and O.

• The return value I is a vector of elements i = 1, ...n where its length n is equal to
the number of input ports.

In this example, n is 1 because only one input port is declared.

9 Build Discrete-Event Systems Using System Objects

9-12

• The ith element indicates the entity storage index that the ith input port connects
to.

In this example, input port 1 is connected to storage 1.
• If an input port is a signal port, the corresponding element is 0.

Similarly the return value O is used to define the connections between the storage
and the output port.

5 Specify an eventForward event to forward an entity of type Car to the output when
it enters the storage.
 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 event = obj.eventForward('output', 1, obj.Delay);
 end

A Car entry to the storage invokes an event action and the event
obj.eventForward forwards Car to the output with index 1 with a delay specified
by obj.Delay.

You can use the input arguments of this method to create custom behavior. The
argument obj is the discrete-event System object inherited by the method. The
argument storage is the index of the storage element that the entity enters. The
argument entity is the entity that enters the storage and it has two fields,
entity.sys and entity.data. The argument source is the source location of the
entity that enters the storage.

Note You cannot manipulate entity data within an exit action.
6 Name your discrete-event System object CustomEntityStorageBlock and save it

as CustomEntityStorageBlock.m.

The custom block represents a simplified gas station that can serve one car at a time.
A car arrives at the gas station and is serviced for 4 minutes before departing the
station.

See the Code to Generate Custom Entity Storage Block
classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;

 Delay Entities with a Custom Entity Storage Block

9-13

 % Delay
 Delay = 4;
 end

 methods (Access = protected)

 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 end

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 event = obj.eventForward('output', 1, obj.Delay);
 end

 end

end

Implementing the Custom Entity Storage Block
1 Create a model using an Entity Generator block, MATLAB Discrete-Event System

block, and an Entity Terminator block.

9 Build Discrete-Event Systems Using System Objects

9-14

2 Open the MATLAB Discrete-Event System block, and set the Discrete-event System
object name to CustomEntityStorageBlock.

3 Double-click the MATLAB Discrete-Event System block to observe its capacity and
delay.

4 Output the Number of entities arrived, a statistic from the Entity Terminator block
and connect it to a scope

5 Increase the simulation time to 20 and run the simulation. Observe the entities
arriving at the Entity Terminator block with a delay of 4.

 Delay Entities with a Custom Entity Storage Block

9-15

See Also
entry | getEntityPortsImpl | getEntityStorageImpl | getEntityTypesImpl |
matlab.DiscreteEventSystem | matlab.System

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-

75

9 Build Discrete-Event Systems Using System Objects

9-16

Create a Custom Entity Storage Block with Iteration
Event

A discrete-event System objectcan contain multiple event types for manipulating entities,
acting on the storages, and resource management. When an event is due for execution, a
discrete-event system can respond to that event by invoking event actions. The goal of
this example is to show how to work with events and event actions when creating a
custom block. To see the list of provided event and event actions, see “Customize
Discrete-Event System Behavior Using Events and Event Actions” on page 9-69.

To open the model and to observe the behavior of the custom block, see
CustomEntityStorageBlockWithIterationEventExample.

Create the Discrete-Event System Object
In this example, a custom block allows entities to enter its storage element through its
input port. The storage element sorts the entities based on their Diameter attribute in
ascending order. Every entity entry to the block's storage invokes an iteration event to
display the diameter and the position of each entity in the storage.

The storage element allows you to define its capacity to store and sort entities during
which any entity can be accessed and manipulated. In this example, the storage with
capacity 5 is used to store and sort car wheels based on their Diameter attribute in an
ascending order. When a new wheel enters the storage, an iteration event eventIterate
is invoked, which triggers an iteration event action iterate to display wheel positions in
the storage and their diameter.

 Create a Custom Entity Storage Block with Iteration Event

9-17

See the Code to Generate the Custom Storage Block with Iteration Event
classdef CustomEntityStorageBlockIteration < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port and one storage element.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 5;
 end
 % Create the storage element with one input and one storage.
 methods (Access=protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 0;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityType1 = obj.entityType('Wheel');
 entityTypes = entityType1;
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Wheel'};
 outputTypes={};

 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queuePriority('Wheel',obj.Capacity, 'Diameter','ascending');
 I = 1;
 O = [];

 end

 end
 % Entity entry event action
 methods

 function [entity, event] = WheelEntry(obj,storage,entity, source)
 % Entity entry invokes an iterate event.
 event = obj.eventIterate(1, '');
 end

 % The itarate event action
 function [entity,event,next] = WheelIterate(obj,storage,entity,tag,cur)
 % Display wheel id, position in the storage, and diameter.
 coder.extrinsic('fprintf');
 fprintf('Wheel id %d, Current position %d, Diameter %d\n', ...
 entity.sys.id, cur.position, entity.data.Diameter);
 if cur.size == cur.position
 fprintf('End of Iteration \n')
 end
 next = true;
 event=[];
 end

9 Build Discrete-Event Systems Using System Objects

9-18

 end

end

Define Custom Block Behavior
1 Define a storage with capacity obj.Capacity, which sorts wheels based in their

priority value. The priority values are acquired from the Diameter attributes of the
entities and are sorted in ascending order.
 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queuePriority('Wheel',obj.Capacity, 'Diameter','ascending');
 I = 1;
 O = [];
 end

2 A wheel's entry into the storage invokes an iterate event.
 function [entity, event] = WheelEntry(obj,storage,entity, source)
 % Entity entry invokes an iterate event.
 event = obj.eventIterate(1, '');
 end

Input argument 1 is the storage index for the iterate event, and '' is the tag name.
3 The iterate event invokes an iterate event action.

 % The itarate event action
 function [entity,event,next] = WheelIterate(obj,storage,entity,tag,cur)
 % Display wheel id, position in the storage, and diameter.
 coder.extrinsic('fprintf');
 fprintf('Wheel id %d, Current position %d, Diameter %d\n', ...
 entity.sys.id, cur.position, entity.data.Diameter);
 if cur.size == cur.position
 fprintf('End of Iteration \n')
 end
 next = true;
 event=[];
 end

In the code, coder.extrinsic('fprintf') declares the function fprintf() as
extrinsic function for code generation. For each iteration, the code displays the new
wheel ID, current position, and diameter, which is used as sorting attribute.

Implement Custom Block
1 Save the .m file as CustomEntityStorageBlockIteration. Link the System

object to a SimEvents model by using a MATLAB Discrete-Event System block. For
more information about linking, see “Create Custom Blocks Using MATLAB Discrete-
Event System Block” on page 9-2.

 Create a Custom Entity Storage Block with Iteration Event

9-19

2 Create a SimEvents model including the MATLAB Discrete-Event System block, and
an Entity Generator block.

3 In the Entity Generator block:

a In the Entity type tab, set the Attribute Name as Diameter.

The attribute Diameter is used to sort entities in the MATLAB Discrete-Event
System block.

b In the Event actions tab, in the Generate action field, add this code to
randomize the size of the incoming entities.

entity.Diameter = randi([1 10]);
c In the Statistics tab, output the Number of entities departed, d statistic and

connect to a scope.
4 Connect the blocks as shown and simulate the model.

a Observe that the Entity Generator block generates 5 entities since the capacity
of the storage block is 5.

9 Build Discrete-Event Systems Using System Objects

9-20

b The Diagnostic Viewer displays the iteration event for each wheel entry to the
storage. Each iteration displays ID, position, and diameter of the wheels. Observe
how each wheel entry changes the order of the stored wheels. In the last
iteration, 5 entities in the storage are sorted in ascending order.

 Create a Custom Entity Storage Block with Iteration Event

9-21

See Also
entry | eventIterate | getEntityPortsImpl | getEntityStorageImpl |
getEntityTypesImpl | iterate | matlab.DiscreteEventSystem | matlab.System

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-

75

9 Build Discrete-Event Systems Using System Objects

9-22

Custom Entity Storage Block with Multiple Timer Events
A discrete-event system allows the implementation of distinct event types for
manipulating entities and storages. Sometimes, the desired behavior involves more than
one event acting on the same storage or entity. This example shows how to handle
multiple events acting on the same target in a discrete-event system framework. In this
example, a custom entity storage block is generated to implement the tag, which is one
of the identifiers, when multiple timer events are acting on the same entity. To see the list
of event identifiers, see “Customize Discrete-Event System Behavior Using Events and
Event Actions” on page 9-69.

To open the model and observe the behavior of the custom block, see
CustomEntityStorageBlockWithTwoTimerEventsExample.

Create the Discrete-Event System Object with Multiple Timer
Events
Suppose that the discrete-event System object is used to represent a facility that
processes metal parts using an oven. The processing time varies based on the detected
metal. For safety, the parts have a maximum allowed processing time.

• If the oven processing time is less than the allowed maximum time, the parts are
processed and depart the oven and the facility.

• If there is an error in detected metal, the service time exceeds the maximum allowed
processing time, the process stops and the parts are taken out of the oven to be
rerouted for further processing.

To represent this behavior, this example uses a custom entity storage block with one
input, two outputs, and a storage element. An entity of type Part with TimeOut attribute
enters the storage of the custom block to be processed. TimeOut determines the
maximum allowed processing time of the parts. When a part enters the storage, two timer
events are activated. One timer tracks the processing time of the part in the oven. When
this timer expires, the entity is forwarded to output 1. Another timer acts as a fail-safe
and tracks if the maximum allowed processing time is exceeded or not. When this timer
expires, the process is terminated and the entity is forwarded to the output 2.

 Custom Entity Storage Block with Multiple Timer Events

9-23

This example that generates the custom block and uniquely identifies these two timer
events targeting on the same entity using custom tags.

See the Code to Generate the Custom Storage Block with Timer Events
classdef CustomEntityStorageBlockTimer < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port, two output ports, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 end

 methods (Access=protected)

 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 2;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Part');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Part'};
 outputTypes = {'Part' 'Part'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Part', obj.Capacity);
 I = 1;
 O = [1 1];
 end

9 Build Discrete-Event Systems Using System Objects

9-24

 end

 methods

 function [entity,event] = PartEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 ProcessingTime=randi([1 15]);
 event1 = obj.eventTimer('TimeOut', entity.data.TimeOut);
 event2 = obj.eventTimer('ProcessComplete', ProcessingTime);
 event = [event1 event2];
 end

 function [entity, event] = timer(obj,storage,entity,tag)
 % Specify event actions for when scheduled timer completes.
 event = obj.initEventArray;
 switch tag
 case 'ProcessComplete'
 event = obj.eventForward('output', 1, 0);
 case 'TimeOut'
 event = obj.eventForward('output', 2, 0);
 end

 end

 end

end

Custom Block Behavior
1 Generate a custom block with one input, two outputs, and a storage element. For

more information about creating a basic storage element, see “Implement a Discrete-
Event System Object with MATLAB Discrete-Event System Block” on page 9-7.
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 2;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Part');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Part'};
 outputTypes = {'Part' 'Part'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('entity1', obj.Capacity);
 I = 1;
 O = [1 1];
 end

 Custom Entity Storage Block with Multiple Timer Events

9-25

2 Invoke two timers with tags 'TimeOut' and 'ProcessComplete' when an entity
enters the storage.
 function [entity,event] = PartEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 ProcessingTime = randi([1 15]);
 % The TimeOut attribute specifies the expiration time of the timer with tag TimeOut
 event1 = obj.eventTimer('TimeOut', entity.data.TimeOut);
 % The expiration time of the timer ProcessComplete is a random integer between
 % 1 and 15.
 event2 = obj.eventTimer('ProcessComplete', ProcessingTime);
 event = [event1 event2];
 end

3 The timer that expires the first determines the entity forward behavior.
 function [entity, event] = timer(obj,storage,entity,tag)
 % Specify event actions for when scheduled timer completes.
 event = obj.initEventArray;
 switch tag
 case 'ProcessComplete'
 % If ProcessComplete expires first, entities are forwarded to output 1.
 event = obj.eventForward('output', 1, 0);
 case 'TimeOut'
 % If TimeOut expires first, entities are forwarded to output 2.
 event = obj.eventForward('output', 2, 0);
 end
 end

Implement Custom Block
1 Save the .m file as CustomEntityStorageBlockTimer. Link the System object to a

SimEvents model by using a MATLAB Discrete-Event System block. For more
information about linking, see “Create Custom Blocks Using MATLAB Discrete-Event
System Block” on page 9-2.

2 Create a SimEvents model including the MATLAB Discrete-Event System block, an
Entity Generator block, two Entity Terminator blocks. Connect the blocks as shown in
the model.

9 Build Discrete-Event Systems Using System Objects

9-26

3 In the Entity Generator block:

a In the Entity type tab, set the Attribute Name as TimeOut.
b In the Event actions tab, in the Generate action field:

entity.TimeOut = 10;
4 In the Entity Terminator and Entity Terminator1 blocks, output the Number of

entities arrived, a statistic and connect them to scopes.
5 Increase simulation time to 100 and simulate the model. Observe that entities are

forwarded to the corresponding output based on the corresponding timer expiration.

 Custom Entity Storage Block with Multiple Timer Events

9-27

9 Build Discrete-Event Systems Using System Objects

9-28

See Also
entry | eventTimer | getEntityPortsImpl | getEntityStorageImpl |
getEntityTypesImpl | matlab.DiscreteEventSystem | matlab.System | timer

 See Also

9-29

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-

75

9 Build Discrete-Event Systems Using System Objects

9-30

Custom Entity Generator Block with Signal Input
This example shows how to create a custom source block that generates entities and to
manage discrete states when implementing the discrete-event System object methods.

Suppose that you manage a facility that produces raw materials with a fixed deterministic
rate. The materials contain a 12-digit bar code for stock management and priority values
for order prioritization. To represent this behavior, this example shows how to generate a
custom entity storage block is generated with one signal input port, one entity output
port, and one storage element. The block generates entities with distinct priority values.
The entities carry data and depart the block from its output port. The entity priority
values are acquired from values of the incoming signal.

To open the model and to observe the behavior of the custom block, see
CustomEntityGeneratorBlockExample.

Create the Discrete-Event System Object

The block is defined as a custom entity generator block that generates entities with
specified intergeneration periods. The generated entities carry data, and their priority
values are determined by the values of the input signal.

See the Code to Create the Custom Entity Generator Block
classdef CustomEntityStorageBlockGeneration < matlab.DiscreteEventSystem...
 & matlab.system.mixin.Propagates
 % A custom entity generator block.

 % Nontunable properties

 Custom Entity Generator Block with Signal Input

9-31

 properties (Nontunable)
 % Generation period
 period = 1;
 end

 properties(DiscreteState)
 % Entity priority
 priority;
 % Entity value
 value;
 end

 % Discrete-event algorithms
 methods
 function events = setupEvents(obj)
 % Set up entity generation events at simulation start.
 events = obj.eventGenerate(1,'mygen',obj.period,obj.priority);
 end

 function [entity,events] = generate(obj,storage,entity,tag,in1)
 % Specify event actions when entity is generated in storage.
 entity.data = obj.value;
 obj.priority = in1;
 events = [obj.eventForward('output',1,0) ...
 obj.eventGenerate(1,'mygen',obj.period,obj.priority)];
 end
 end

 methods(Access = protected)

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Material');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 % Specify entity input and output ports. Return entity types at
 % a port as strings in a cell array. Use empty string to
 % indicate a data port.
 inputTypes = {''};
 outputTypes = {'Material'};
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties.
 obj.priority = 10;
 obj.value = 1:12;
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Material', 1);
 I = 0;
 O = 1;
 end

 function num = getNumInputsImpl(obj)
 % Define total number of inputs for system with optional inputs.
 num = 1;
 end

 function out = getOutputSizeImpl(obj)
 % Return size for output port.
 out = [1 12];

9 Build Discrete-Event Systems Using System Objects

9-32

 end

 function out = getOutputDataTypeImpl(obj)
 % Return data type for output port.
 out = "double";
 end

 function out = isOutputComplexImpl(obj)
 % Return true for output port with complex data.
 out = false;
 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name)
 % Return size, data type, and complexity of discrete-state.
 switch name
 case 'priority'
 sz = [1 1];
 case 'value'
 sz = [1 12];
 end
 dt = "double";
 cp = false;
 end

 end

end

Custom Block Behavior
1 Define the time between material generations.

 % Nontunable properties
 properties (Nontunable)
 % Generation period
 period = 1;
 end

2 Initialize the discrete state variables.
 function resetImpl(obj)
 % Initialize / reset discrete-state properties.
 obj.priority = 10;
 obj.value = 1:12;
 end

The variable priority represents material priority and the value represents bar
code data carried by the materials.

3 Initialize the output for a source block.
 function out = getOutputSizeImpl(obj)
 % Return size for output port.
 out = [1 12];
 end

 function out = getOutputDataTypeImpl(obj)
 % Return data type for output port.
 out = "double";

 Custom Entity Generator Block with Signal Input

9-33

 end

 function out = isOutputComplexImpl(obj)
 % Return true for output port with complex data.
 out = false;
 end

• First function declares the output size.
• Second function declares that output port data type is double.
• Third function declares false for output port because it does not support

complex data.
4 Declare the size, data, and complexity of the discrete states.

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name)
 % Return size, data type, and complexity of discrete-state.
 switch name
 case 'priority'
 sz = [1 1];
 case 'value'
 sz = [1 12];
 end
 dt = "double";
 cp = false;
 end

• The discrete state priority is scalar. The data type is double and takes real
values.

• The discrete state value is a 1-by-12 vector. The data type is double and takes
real values.

5 Generate the materials with intergeneration period, priority, and data defined by:

• The parameter obj.period, declared as a public parameter that can be changed
from the block dialog box.

• The parameter obj.priority values, defined by the signal from the input port.
• The parameter obj.value, a 1-by-12 vector which represents the data carried by

entities.
 function events = setupEvents(obj)
 % Set up entity generation event for storage 1 at simulation start.
 events = obj.eventGenerate(1,'mygen',obj.period,obj.priority);
 end

 function [entity,events] = generate(obj,storage,entity,tag,in1)
 % Specify event actions when entity is generated in storage.
 entity.data = obj.value;
 % The value from the signal is assigned to the entity priority.
 obj.priority = in1;
 events = [obj.eventForward('output',1,0) ...
 obj.eventGenerate(1,'mygen',obj.period,obj.priority)];
 end

9 Build Discrete-Event Systems Using System Objects

9-34

Implement Custom Block
1 Save the .m file as CustomEntityStorageBlockGeneration. Link the System

object to a SimEvents model by using a MATLAB Discrete-Event System block. For
more information about linking, see “Create Custom Blocks Using MATLAB Discrete-
Event System Block” on page 9-2.

2 Create a SimEvents model that includes the MATLAB Discrete-Event System block, a
Ramp block, and an Entity Terminator block. Connect the blocks as shown in the
model.

3 In the Ramp block, set Slope to 5 and Initial output to 10.
4 Scope the signal between the Ramp block and the MATLAB Discrete-Event System

block.
5 In the Entity Terminator block, to display the priority values of the entities arriving at

the block, in the Entry action field enter this code.
coder.extrinsic('fprintf');
fprintf('Priority: %d\n', double(entitySys.priority))

6 Right-click the entity path from the custom Entity Generator to the Entity Terminator
and select the Log Selected Signals.

7 Simulate the model.

a Observe the output of the Ramp block. For instance, the output value becomes
15, 20, 25, and 30 for the simulation time 1, 2, 3, and 4, respectively.

 Custom Entity Generator Block with Signal Input

9-35

b The Simulation Data Inspector shows that entities are forwarded to the Entity
Terminator block with data of size 1-by-12.

9 Build Discrete-Event Systems Using System Objects

9-36

c The Diagnostic Viewer shows the entitySys.priority values. The priority
values are acquired from the ramp signal value at entity generation times 1, 2,3,
4, 5, 6, 7, 8, 9, and 10.

 Custom Entity Generator Block with Signal Input

9-37

See Also
entry | generate | getEntityPortsImpl | getEntityStorageImpl |
matlab.DiscreteEventSystem | matlab.System

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-

75

9 Build Discrete-Event Systems Using System Objects

9-38

Build a Custom Block with Multiple Storages
This example shows how to create a custom block with multiple storages and manage
storage behavior using discrete-event System object methods.

Suppose that you manage a facility that produces items for customer orders. To prepare
for repetitive orders, the facility produces a supply of items before the orders arrive.
When a new order arrives, the stocks are checked for availability.

• If the item is found in the storage, it departs the facility to fulfil the order.
• If the item is not found in the storage, a new item is produced and the generated item

departs the facility to fulfil the order.

To generate this custom behavior, you manipulate multiple storages through a discrete-
event System object, created using the matlab.DiscreteEventSystem methods. To
observe the behavior of the custom block, see
CustomEntityStorageBlockWithTwoStoragesExample.

Create the Discrete-Event System Object
Generate a custom entity storage block with two inputs, one output, and two storage
elements.

 Build a Custom Block with Multiple Storages

9-39

The desired behavior of the custom block is to select and output entities based on a
reference entity.

1 Input port 1 accepts entities with type Item to storage 1.
2 Input port 2 accepts reference entities with type Order to storage 2.
3 When a reference Order arrives at storage 2, its attribute data is recorded as the

reference value, and the entity is destroyed.
4 The Order arrival invokes an iteration event at storage 1 to search for an Item

carrying data that is equal to the reference value.
5 If a match is found, the matching item is forwarded to output port 1 and the iteration

ends.
6 If the match is not found, a new Item is generated at storage 1 with a matching

attribute value and forwarded to output port 1.

9 Build Discrete-Event Systems Using System Objects

9-40

See the Code to Generate the Custom Storage Block with Multiple Storages
classdef CustomBlockTwoEntityStorages < matlab.DiscreteEventSystem & ...
 matlab.system.mixin.Propagates
 % Select from stored entities based on a lookup key.

 properties (Nontunable)
 % Capacity
 capacity = 100;
 end

 properties (DiscreteState)
 InputKey;
 end

 methods (Access=protected)

 function num = getNumInputsImpl(~)
 num = 2;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function [entityTypes] = getEntityTypesImpl(obj)
 entityTypes = [obj.entityType('Item'), ...
 obj.entityType('Order')];
 end

 function [inputTypes, outputTypes] = getEntityPortsImpl(~)
 inputTypes = {'Item' 'Order'};
 outputTypes = {'Item'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = [obj.queueFIFO('Item', obj.capacity)...
 obj.queueFIFO('Order', obj.capacity)];
 I = [1 2];
 O = 1;
 end

 function [sz, dt, cp] = getDiscreteStateSpecificationImpl(obj, name)
 sz = 1;
 dt = 'double';
 cp = false;
 end

 function resetImpl(obj)
 obj.InputKey = 0;
 end
 end

 methods

 function [Order,events] = OrderEntry(obj, storage, Order, source)
 % A key entity has arrived; record the Inputkey value.
 obj.InputKey = Order.data.Key;
 % Schedule an iteration of the entities in storage 1.
 % Destroy input key entity.
 events = [obj.eventIterate(1, '') ...
 obj.eventDestroy()];

 Build a Custom Block with Multiple Storages

9-41

 coder.extrinsic('fprintf');
 fprintf('Order Key Value: %f\n', Order.data.Key);
 end

 function [Item,events,continueIter] = ItemIterate(obj,...
 storage, Item, tag, cur)
 % Find entities with matching key.
 events = obj.initEventArray;
 continueIter = true;

 if (Item.data.Attribute1 == obj.InputKey)
 events = obj.eventForward('output', 1, 0.0);
 % If a match is found, the iteration ends and the state is reset.
 continueIter = false;

 elseif cur.size == cur.position
 % If a match is not found, a new matching entity is generated.
 events = obj.eventGenerate(1,'mygen',0.0,100);
 end
 end

 function [Item,events] = ItemGenerate(obj,storage,Item,tag)
 % Specify event actions when entity generated in the storage.
 Item.data.Attribute1 = obj.InputKey;
 events = obj.eventForward('output',1,0.0);
 end
 end
end

Custom Block Behavior
1 Discrete state variable InputKey represents the recorded reference value from

Order, which is used to select corresponding Item.
 properties (DiscreteState)
 InputKey;
 end

2 The block has two storages with FIFO behavior. Storage 1 supports entities with type
Item, and storage 2 supports entities with type Order. The block has two input ports
and one output port. Input port 1 and output port 1 are connected to storage 1. Input
port 2 is connected to storage 2. For more information about declaring ports and
storages, see “Implement a Discrete-Event System Object with MATLAB Discrete-
Event System Block” on page 9-7.
 function num = getNumInputsImpl(~)
 num = 2;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function [entityTypes] = getEntityTypesImpl(obj)
 entityTypes = [obj.entityType('Item'), ...
 obj.entityType('Order')];
 end

9 Build Discrete-Event Systems Using System Objects

9-42

 function [inputTypes, outputTypes] = getEntityPortsImpl(~)
 inputTypes = {'Item' 'Order'};
 outputTypes = {'Order'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = [obj.queueFIFO('Item', obj.capacity)...
 obj.queueFIFO('Order', obj.capacity)];
 I = [1 2];
 O = 1;
 end

3 Specify the discrete state and reset the state InputKey. For more information about
states in discrete-event systems, see “Custom Entity Generator Block with Signal
Input” on page 9-31.
 function [sz, dt, cp] = getDiscreteStateSpecificationImpl(obj, name)
 sz = 1;
 dt = 'double';
 cp = false;
 end

 function resetImpl(obj)
 obj.InputKey = 0;
 end

4 When Order arrives at storage 2, its data Key is recorded in the discrete state
variable Obj.InputKey. This entry also invokes an iteration event at storage 1 and
another event to destroy Order.
 function [Order, events] = OrderEntry(obj, storage, Order, source)
 % A key entity has arrived; record the Inputkey value.
 obj.InputKey = Order.data.Key;
 % Schedule an iteration of the entities in storage 1.
 % Destroy input key entity.
 events = [obj.eventIterate(1, '') ...
 obj.eventDestroy()];
 coder.extrinsic('fprintf');
 fprintf('Order Key Value: %f\n', Order.data.Key);
 end

5 The purpose of the iteration is to find items with data that matches InputKey.
 function [Item,events,continueIter] = ItemIterate(obj,...
 storage, Item, tag, cur)
 % Find entities with matching key.
 events = obj.initEventArray;
 continueIter = true;

 if (Item.data.Attribute1 == obj.InputKey)
 events = obj.eventForward('output', 1, 0.0);
 % If a match is found, the iteration ends and the state is reset.
 continueIter = false;

 elseif cur.size == cur.position
 % If a match is not found, this invokes an entity generation event.
 events = obj.eventGenerate(1,'mygen',0.0,100);
 end
 end

 Build a Custom Block with Multiple Storages

9-43

6 Generate an entity with type entity1 and a matching Key value. Then, forward the
generated entity to output port 1.
 function [Item,events] = ItemGenerate(obj,storage,Item,tag)
 % Specify event actions when entity generated in the storage.
 Item.data.Attribute1 = obj.InputKey;
 events = obj.eventForward('output',1,0.0);
 end

Implement the Custom Block
1 Save the .m file as CustomBlockTwoEntityStorages. Link the System object to a

SimEvents model using a MATLAB Discrete-Event System block. For more
information about linking, see “Create Custom Blocks Using MATLAB Discrete-Event
System Block” on page 9-2.

2 Create a SimEvents model including the MATLAB Discrete-Event System block, two
Entity Generator blocks, and an Entity Terminator block. Connect the blocks as
shown in the model.

3 In the Entity Generator block:

a In the Entity generation tab, set the Generate entity at simulation start to
off.

b In the Entity type tab, set the Entity type name as Item.
c In the Event Actions tab, in the Generate action field enter:

entity.Attribute1 = randi([1 3]);

9 Build Discrete-Event Systems Using System Objects

9-44

By default, the entities are generated with intergeneration time 1 and their
Attribute1 value is a random integer between 1 and 3.

d In the Statistics tab, output the Number of entities departed, d statistic and
connect it to a scope.

4 In the Entity Generator1 block:

a In the Entity generation tab, set Generate entity at simulation start to off,
and set Period to 5.

b In the Entity type tab, set the Entity type name as Order and Attribute
Name as Key.

c In the Event Actions tab, in the Generate action field enter:

entity.Key = randi([1 4]);

Entities with type Order are generated with intergeneration time 5, and the Key
attribute takes integer values between 1 and 4.

There is no possible match between Key and Attribute1 when the Key value is 4
because Attribute1 can take the value 1, 2, or 3.

5 In the Entity Terminator block, output the Number of entities arrived, a statistic
and connect it to a scope.

6 Right-click the entity path from the MATLAB Discrete-Event System block to the
Entity Terminator block and select Log Selected Signals.

7 Increase simulation time to 50 and simulate the model. Observe that:

a 50 entities with type Entity1 enter storage 1 in the block.

 Build a Custom Block with Multiple Storages

9-45

b In the Diagnostic Viewer, observe the incoming Key reference values carried by
10 entities that enter storage 2 and are destroyed afterward.

9 Build Discrete-Event Systems Using System Objects

9-46

c The Simulation Data Inspector shows the departing items and their Attribute1
values. The values match the Key values displayed in the Diagnostic Viewer.

Also observe 5 entities departing with Attribute1 value 4. These entities are
generated in storage 2 because Attribute1 cannot have the value 4 for the
entities generated by the Entity Generator block.

 Build a Custom Block with Multiple Storages

9-47

See Also
entry | generate | getEntityPortsImpl | getEntityStorageImpl | iterate |
matlab.DiscreteEventSystem | matlab.System

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-

75

9 Build Discrete-Event Systems Using System Objects

9-48

Create a Custom Resource Acquirer Block
This example shows how to use resource management methods to create a custom entity
storage block in which entities acquire resources from specified Resource Pool blocks.

Suppose that you manage a facility that produces parts from two different materials,
material 1 and material 2, to fulfil orders. After a part is produced, it is evaluated for
quality assurance.

Two testing methods for quality control are:

• Test 1 is used for parts that are produced from material 1.
• Test 2 is used for parts that are produced from material 2

After the production phase, parts are tagged based on their material to apply the correct
test.

To generate the custom behavior, you create a discrete-event System object using the
matlab.DiscreteEventSystem class methods for resource management.

Create the Discrete-Event System Object
Generate a custom entity storage block with one input, one output, and one storage
element.

The block accepts an entity of type Part to its storage with capacity 1. The entity has an
attribute Test to indicate the material from which the part is produced. Based on the

 Create a Custom Resource Acquirer Block

9-49

value of the attribute, the entity acquires a resource from the specified Resource Pool
block and departs the block to be tested.

See the Code to Generate the Custom Block to Acquire Resources
classdef CustomBlockAcquireResources < matlab.DiscreteEventSystem
 % Custom resource acquire block example.

 methods(Access = protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes(1) = obj.entityType('Part');
 end

 function [input, output] = getEntityPortsImpl(obj)
 input = {'Part'};
 output = {'Part'};
 end

 function [storageSpec, I, O] = getEntityStorageImpl(obj)
 storageSpec(1) = obj.queueFIFO('Part', 1);
 I = 1;
 O = 1;
 end

 function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
 end

 end

 methods

 function [entity,events] = entry(obj, storage, entity, source)
 % On entity entry, acquire a resource from the specified pool.
 if entity.data.Test == 1
 % If the entity is produced from Material1, request Test1.
 resReq = obj.resourceSpecification('Test1', 1);
 else
 % If the entity is produced from Material2, request Test2.
 resReq = obj.resourceSpecification('Test2', 1);
 end
 % Acquire the resource from the corresponding pool.
 events = obj.eventAcquireResource(resReq, 'TestTag');
 end

 function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After the resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);

9 Build Discrete-Event Systems Using System Objects

9-50

 end

 end

end

Custom Block Behavior
1 Define Test1 and Test2 type resources to be acquired by the entity type Part.

function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
end

2 The entity enters the storage. If its entity.data.Test value is 1, the entity is
produced from Material1. The entity acquires 1 resource from the Resource Pool
block with resources of type Test1. Similarly, If its entity.data.Test value is 2,
the entity acquires one resource from the Resource Pool block with resources of type
Test2.
methods

 function [entity,events] = entry(obj, storage, entity, source)
 % On entity entry, acquire a resource from the specified pool.
 if entity.data.Test == 1
 % If the entity is produced from Material1, it acquires resource of type Test1.
 resReq = obj.resourceSpecification('Test1', 1);
 else
 % If the entity is produced from Material2, it acquires resource of type Test2.
 resReq = obj.resourceSpecification('Test2', 1);
 end
 % Acquire the resource from the corresponding pool.
 events = obj.eventAcquireResource(resReq, 'TestTag');
 end

 function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After the resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
 end

end

After the resource is successfully acquired, the resourceAcquired invokes the
forwarding of the entity.

Implement the Custom Block
1 Save the .m file as CustomBlockAcquireResources. Link the System object to a

SimEvents model by using a MATLAB Discrete-Event System block. For more

 Create a Custom Resource Acquirer Block

9-51

information about linking, see “Create Custom Blocks Using MATLAB Discrete-Event
System Block” on page 9-2.

2 Create a SimEvents model using a MATLAB Discrete-Event System block, an Entity
Generator block and an Entity Terminator block, and two Resource Pool blocks.
Connect the blocks as shown in the diagram.

Label Entity Generator block as Part Generator and Entity Terminator block as
Departure for Testing.

3 In the Part Generator:

a In the Entity generation tab, set the Generate entity at simulation start to
off.

b In the Entity type tab, set the Entity type name as Part and Attribute Name
to Test.

c In the Event Actions tab, in the Generate action field enter:

entity.Test= randi([1 2]);

9 Build Discrete-Event Systems Using System Objects

9-52

Parts are generated with intergeneration time 1 and their Test attribute value is
1 or 2 to indicate the material type.

4 In the Resource Pool block:

a Set the Resource name to Test1 and the Reusable upon release parameter
to off.

b In the Statistics tab, output the Amount available, avail statistic and connect
it to a scope.

5 In the Resource Pool1 block:

a Set the Resource name to Test2 and the Reusable upon release parameter
to off.

b In the Statistics tab, output the Amount available, avail statistic and connect
it to a scope.

6 Right-click the entity path from Part Generator to the MATLAB Discrete-Event
System block and select Log Selected Signals.

7 Simulate the model.

• Observe the Test attribute values of the incoming entities to the custom block.
Three entities require test 1 and seven entities requires test 2.

 Create a Custom Resource Acquirer Block

9-53

• Observe that three resources of type Test1 are acquired by entities.

9 Build Discrete-Event Systems Using System Objects

9-54

• Observe that seven resources of type Test2 are acquired by entities.

 Create a Custom Resource Acquirer Block

9-55

See Also
cancelAcquireResource | entry | eventAcquireResource |
getResourceNamesImpl | matlab.DiscreteEventSystem | matlab.System |
resourceAcquired | resourceSpecification

9 Build Discrete-Event Systems Using System Objects

9-56

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-

75

 See Also

9-57

Create a Discrete-Event System Object
In this section...
“Methods” on page 9-59
“Inherited Methods from matlab.System Class” on page 9-62
“Inherited Methods from matlab.system.mixin Package” on page 9-62
“Reference and Extract Entities” on page 9-63

The MATLAB Discrete-Event System block allows you to author a custom discrete-event
System object and use it in SimEvents models. To author event-driven entity-flow systems,
the block uses discrete-event System object with the matlab.DiscreteEventSystem
class, which inherits and extends the matlab.System class.

You can optionally inherit a subset of methods from the matlab.system.mixin package
by inheriting matlab.System.mixin.Propagates,
matlab.System.mixin.CustomIcon, or matlab.System.mixin.SampleTime
classes. This diagram shows the relationships between the classes in the creation of a
discrete-event System object.

9 Build Discrete-Event Systems Using System Objects

9-58

Methods
The matlab.DiscreteEventSystem class provides methods that let you work with
these elements of a discrete-event system:

• Define properties of the object entity types, ports, and storage

• getEntityPortsImpl — Define input ports and output ports of discrete-event
system

• getEntityStorageImpl — Define entity storage elements of discrete-event
system

• getEntityTypesImpl — Define entity types of discrete-event system
• Event initialization

• setupEvents — Initialize entity generation events
• Runtime behavior of the object

 Create a Discrete-Event System Object

9-59

• blocked — Event action when entity forward fails
• destroy — Event action upon entity destruction
• entry — Event action when entity enters storage element
• exit — Event action before entity exit from storage
• generate — Event action upon entity creation
• iterate — Event action when entity iterates
• modified — Event action upon entity modification by the Entity Find block
• resourceAcquired — Specify event actions upon successful resource acquisition.
• resourceReleased — Specify event actions upon successful resource release.
• testEntry — Event action to accept or refuse entity
• timer — Event action when timer completes

While implementing these methods, define entity type, entity storage, create, schedule,
and cancel events. Use these functions:

• Define entity type

• entityType — Define entity type
• Define entity storage

• queueFIFO — Define first-in first-out (FIFO) queue storage
• queueLIFO — Define last-in last-out (LIFO) queue storage
• queuePriority — Define priority queue storage
• queueSysPriority — Define system priority queue storage

• Create events

• eventGenerate — Create entity generate event
• eventIterate — Create entity iterate event
• eventTimer — Create entity timer event
• eventForward — Create entity forward event
• eventDestroy — Create entity destroy event
• eventTestEntry — Create an event to indicate that the acceptance policy for the

storage has changed and the storage retests arriving entities
• eventAcquireResource — Create a resource-acquiring event

9 Build Discrete-Event Systems Using System Objects

9-60

• eventReleaseResource — Create an event to release previously acquired
resources(This method allows for partial resource release)

• eventReleaseAllResources — Create an event to release all the resources
acquired by an entity

• Cancel events

• cancelDestroy — Cancel previously scheduled entity destroy event
• cancelForward — Cancel entity forward event
• cancelGenerate — Cancel previously scheduled entity generation event
• cancelIterate — Cancel previously scheduled iterate event
• cancelTimer — Cancel previously scheduled timer event
• cancelAcquireResource — Cancel previously scheduled resource acquisition

event
• Resource Management

• getResourceNamesImpl — Define resource pools from which the discrete-event
system acquires the resources

• resourceType — Specify an entity type and the name of the resources to be
acquired by the specified entity

• eventAcquireResource — Create a resource-acquiring event
• eventReleaseResource — Create an event to release previously acquired

resources (This method allows for partial resource release)
• eventReleaseAllResources — Create an event to release all the resources

acquired by an entity
• cancelAcquireResource — Cancel previously scheduled resource acquisition

event
• resourceSpecification — Specify the type and amount of resources for

eventAcquireResource or eventReleaseResource requests
• initResourceArray — Initialize a resourceSpecification array, required for

code generation
• resourceAcquired — Specify event actions upon successful resource acquisition
• resourceReleased — Specify event actions upon successful resource release

 Create a Discrete-Event System Object

9-61

Inherited Methods from matlab.System Class
Inheriting matlab.DiscreteEventSystem class also inherits a subset of the
matlab.System class methods.

getHeaderImpl Header for System object display
getPropertyGroupsImpl Property groups for System object display
isInactivePropertyImpl Inactive property status
validatePropertiesImpl Validate property values
processTunedPropertiesImpl Action when tunable properties change
getNumInputsImpl Number of inputs to step method
getInputNamesImpl Names of System block input ports
getNumOutputsImpl Number of outputs from step method
getOutputNamesImpl Names of System block output ports
getDiscreteStateImpl Discrete state property values
setupImpl Initialize System object
resetImpl Reset System object states
releaseImpl Release resources
loadObjectImpl Load System object from MAT file
saveObjectImpl Save System object in MAT file
infoImpl Information about System object

For more information about these methods, see “Customize System Objects for Simulink”
(Simulink).

Inherited Methods from matlab.system.mixin Package
You can inherit other methods that require the inheritance of additional classes from the
matlab.system.mixin package. For example, to specify a discrete state by using
getDiscreteStateSpecificationImpl, inherit the
matlab.system.mixin.Propagates class. For an example of inheriting this class, see
“Selection Server - Select Specific Entities from Server”.

9 Build Discrete-Event Systems Using System Objects

9-62

Inherited Methods from matlab.System.mixin.Propagates Class

To use the methods inherited from matlab.System.mixin.Propagates class, you must
subclass from this class in addition to the matlab.DiscreteEventSystem base class.
Type the following syntax as the first line of your class definition file, where ObjectName
is the name of your object.
classdef ObjectName < matlab.DiscreteEventSystem & matlab.system.mixin.Propagates

This list contains the methods inherited from matlab.system.mixin.Propagates
class.

getOutputSizeImpl Sizes of output ports
getOutputDataTypeImpl Data types of output ports
isOutputComplexImpl Complexity of output ports
getDiscreteStateSpecificatio
nImpl

Discrete state size, data type, and complexity

Inherited Methods from matlab.System.mixin.CustomIcon Class

To inherit methods from the matlab.System.mixin.CustomIcon class, type the
following syntax as the first line of your class definition file.
classdef ObjectName < matlab.DiscreteEventSystem & matlab.system.mixin.CustomIcon

getIconImpl Name to display as block icon

Inherited Methods from matlab.System.mixin.SampleTime Class

To inherit methods from the matlab.System.mixin.SampleTime class, type the
following syntax as the first line of your class definition file.
classdef ObjectName < matlab.DiscreteEventSystem & matlab.system.mixin.SampleTime

getSampleTime Query sample time

Reference and Extract Entities
1 When referencing entity attributes or system properties in a discrete-event System

object, use these formats:

 Create a Discrete-Event System Object

9-63

Attribute or
Property

Format Access

attribute entity.data.attribute_na
me

Read/write

priority
property

entity.sys.priority Read/write

ID property entity.sys.id Read-only
2 If an entity that is a part of a MATLAB Discrete-Event System block is requested for

extraction, the exit method of the block is triggered. When the exit method is
called, its destination argument is set to extract. See modified for entity
modification.

See Also
matlab.DiscreteEventSystem | matlab.System

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Customize Discrete-Event System Behavior Using Events and Event Actions” on

page 9-69

9 Build Discrete-Event Systems Using System Objects

9-64

Generate Code for MATLAB Discrete-Event System
Blocks

To improve simulation performance, you can configure the MATLAB Discrete-Event
System to simulate using generated code. With the Simulate using parameter set to
Code generation option, the block simulates and generates code using only MATLAB
functions supported for code generation.

MATLAB Discrete-Event System blocks support code reuse for models that have multiple
MATLAB Discrete-Event System blocks using the same System object source file. Code
reuse enables the code to be generated only once for the blocks sharing the System
object.

Migrate Existing MATLAB Discrete-Event System System
object
Starting in R2017b, the MATLAB Discrete-Event System block can simulate using
generated code. Existing applications continue to work with the Simulate using
parameter set to Interpreted execution.

If you want to generate code for the block using MATLAB discrete-event system
acceleration, update the System object code using these guidelines. For an example of
updated MATLAB Discrete-Event System System object, see the
seExampleSchedulerClass file in the Develop Custom Scheduler of a Multicore Control
System example.

Replace Renamed matlab.DiscreteEventSystem Methods

To take advantage of simulation with code generation for the
matlab.DiscreteEventSystem class:

1 In the matlab.DiscreteEventSystem application file, change these method names
to the new names:

Old Method Name New Method Name
blockedImpl blocked
destroyImpl destroy
entryImpl entry

 Generate Code for MATLAB Discrete-Event System Blocks

9-65

Old Method Name New Method Name
exitImpl exit
generateImpl generate
iterateImpl iterate
setupEventsImpl setupEvents
timerImpl timer

2 In the code, move the renamed method definitions from a protected area to a public
area for each matlab.DiscreteEventSystem method.

Initialize System Properties

Initialize System object properties in the properties section. Do not initialize them in the
constructor or other methods. In other words, you cannot use variable-size for System
object properties.

Initialize Empty Arrays of Events

Use the initEventArray to initialize arrays.

Before After
 function events = setupEventsImpl(obj) function events = setupEvents(obj)

 events = obj.initEventArray;

Append Elements to Array of Structures

Append elements to array of structures. For example:

Before After
 events(id) = obj.eventGenerate(1, num2str(id), ...
0, obj.Priorities(id)); %#ok<*AGROW>

events = [events obj.eventGenerate(1, int2str(id),...
 0, obj.Priorities(id))]; %#ok<AGROW>

Replace Functions That Do Not Support Code Generation

Replace functions that do not support code generation with functional equivalents that
support code generation. For example:

9 Build Discrete-Event Systems Using System Objects

9-66

Before After
 events(id) = obj.eventGenerate(1, num2str(id), ...
0, obj.Priorities(id)); %#ok<*AGROW>

events = [events obj.eventGenerate(1, int2str(id),...
 0, obj.Priorities(id))]; %#ok<AGROW>

Declare Functions That Do Not Support Code Generation

For functions that do not support code generation and that do not have functional
equivalents, use the coder.extrinsic function to declare those functions as extrinsic.
For example, str2double does not have a functional equivalent. Before calling the
coder.extrinsic, make the returned variable the same data type as the function you
are identifying. For example:

Before After
id = str2double(tag); coder.extrinsic('str2double');

id = 1;
id = str2double(tag);

• Do not pass System object to functions that are declared as extrinsic.
• Declare only static System object methods as extrinsic.

Replace Cell Arrays

Replace cell arrays with matrices or arrays of structures.

Before After
 entity.data.execTime = obj.ExecTimes{id}(1);entity.data.execTime = obj.ExecTimes(id, 1);

Change Flags to Logical Values

Change flags from values such as 1 and 0 to logical values, such as true and false.

Manage Global Data

Manage global data while simulating with code generation using one of these:

• evalin and assignin functions in the MATLAB workspace
• “Static Data Object” (MATLAB)

 Generate Code for MATLAB Discrete-Event System Blocks

9-67

Move Logging and Graphical Functions

Many MATLAB logging and graphical functions do not support code generation. You can
move logging and graphical functions into:

• A new matlab.DiscreteEventSystem object and configure the associated MATLAB
Discrete-Event System block to simulate using Interpreted execution mode.

• An existing simevents.SimulationObserver object

Replace Persistent Variables

Replace persistent variable by declaring a System object property. See “Create System
Objects” (MATLAB) for more information.

Limitations of Code Generation with Discrete-Event System
Block
Limitations include:

• No “Global Variables” (MATLAB)
• “System Objects in MATLAB Code Generation” (Simulink)
• “MATLAB System Block Limitations” (Simulink)

See Also
blocked | cancelForward | cancelGenerate | cancelIterate | cancelTimer |
entry | eventForward | generate | getEntityPortsImpl | getEntityTypesImpl |
iterate | matlab.DiscreteEventSystem | matlab.System | queueFIFO |
setupEvents | timer

More About
• “Integrate System Objects Using MATLAB System Block” (Simulink)
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Create a Discrete-Event System Object” on page 9-58

9 Build Discrete-Event Systems Using System Objects

9-68

Customize Discrete-Event System Behavior Using Events
and Event Actions

In this section...
“Event Types and Event Actions” on page 9-69
“Event Identifiers” on page 9-72

You can customize the behavior of a discrete-event system by defining events and event
actions.

You can:

• Schedule events
• Define event actions in response to events
• Initialize events
• Cancel events

Event Types and Event Actions
Event Types

A discrete-event system can have these event types and their targets.

Event type Target Purpose
eventAcquireResource Entity Allow an entity to acquire

one or more resources.
eventDestroy Entity Destroy an existing entity in

storage.
eventForward Entity Move an entity from its

current storage to another
storage or output port.

eventIterate Storage Iterate and process each
entity in storage.

eventReleaseResource Entity Allow an entity to release
one or more resources.

 Customize Discrete-Event System Behavior Using Events and Event Actions

9-69

Event type Target Purpose
eventReleaseAllResour
ces

Entity Allow an entity to release all
previously acquired
resources.

eventTestEntry Storage Create an event to indicate
that the storage acceptance
policy is changed and the
storage retests the arriving
entities.

eventTimer Entity Create a timer event.
eventGenerate Storage Create an entity inside

storage.

• Forward events

If a forward event fails because of blocking, the forward event remains active. When
space becomes available, the discrete-event system reschedules the forward event for
immediate execution.

• Tagging events

You can schedule multiple events of the same type for the same actor. When using
multiple events of the same type, use tags to distinguish between the events. For
example, an entity can have multiple timers with distinct tags. When one timer
expires, you can use the tag argument of the timer method to differentiate which
timer it is. For more information, see “Custom Entity Storage Block with Multiple
Timer Events” on page 9-23.

If you schedule two events with the same tag on the same actor, the later event
replaces the first event. If you schedule two events with different tags, the discrete-
event system calls them separately.

Event Actions

When an event occurs, a discrete-event system responds to it by invoking a corresponding
action. Implement these actions as System object methods. This table lists each action
method and the triggering event.

9 Build Discrete-Event Systems Using System Objects

9-70

Event Action Triggering Event Purpose
blocked eventForward Called if, upon execution of

a forward event, the entity
cannot leave due to blocking
from the target storage.

destroy eventDestroy Called before an entity is
destroyed and removed from
storage.

entry eventForward Called upon an entity entry.
exit eventForward Called upon entity exit.

When an entity is forwarded
from storage 1 to storage 2,
the exit action of storage 1
and then the entry action of
storage 2 are called.

generate eventGenerate Called after a new entity is
created inside a storage
element.

iterate eventIterate Upon the execution of an
Iterate event, this method is
invoked for each entity from
the front to the back of the
storage, with the option of
early termination. If entities
need to be resorted due to
key value changes, resorting
takes place after the entire
iteration is complete.

resourceAcquired eventAcquireResource Called after a successful
resource acquisition. A
resource acquisition is
successful only if all of the
specified resources are
acquired.

resourceReleased eventReleaseResource Called after the resource
release.

 Customize Discrete-Event System Behavior Using Events and Event Actions

9-71

Event Action Triggering Event Purpose
testEntry eventTestEntry Called after the test entry

event.
timer eventTimer Called upon executing a

timer event of an entity.

Initialize Events

Use these methods to initialize empty arrays and events of a discrete-event system.

Event Type Purpose
initEventArray Initialize event array.
initResourceArray Initialize a resource specification array.
setupEvents Initialize entity generation events.

Cancel Previously Scheduled Events

Use these methods to cancel previously scheduled events of a discrete-event system.

Event type Purpose
cancelAcquireResource Cancel previously scheduled resource

acquisition event
cancelDestroy Cancel previously scheduled entity destroy

event.
cancelForward Cancel entity forward event.
cancelGenerate Cancel previously scheduled entity

generation event.
cancelIterate Cancel previously scheduled iterate event.
cancelTimer Cancel previously scheduled timer event.

Event Identifiers
There are two distinct identifiers for the events provided by the
matlab.DiscreteEventSystem class.

9 Build Discrete-Event Systems Using System Objects

9-72

• Tag — Use the tag as an input argument for a method.

event1 = obj.eventTimer('mytimer1', 2);
event2 = obj.eventTimer('mytimer2', 5);

Here, mytimer1 and mytimer2 are used as tags to refer to these two timer events.
• Destination — Use the destination to identify forward events.

event1 = obj.eventForward('storage', 2, 0.8);
event2 = obj.eventForward('output', 1, 2);

Here, storage and output are used to distinguish two forward events.

The events are not distinguishable when their identifiers are the same. This table shows
how to identify an event when multiple events of the same type act on the same target.

Event Type Identification
eventAcquireResource Tag
eventGenerate Tag
eventIterate Tag
eventReleaseResource Tag
eventReleaseAllResources Tag
eventTimer Tag
eventForward Destination

Note If you define an event that is yet to be executed and a second event with the same
type and identifier, the first event is replaced by the second one.

See Also
blocked | destroy | entry | eventForward | eventGenerate | generate |
matlab.DiscreteEventSystem | matlab.System | setupEvents

More About
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-17
• “Integrate System Objects Using MATLAB System Block” (Simulink)

 See Also

9-73

• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Create a Discrete-Event System Object” on page 9-58

9 Build Discrete-Event Systems Using System Objects

9-74

Call Simulink Function from a MATLAB Discrete-Event
System Block

This example shows how to call a Simulink function when an entity enters the storage
element of a custom discrete-event system block, and to modify entity attributes. For
more information about calling Simulink functions from MATLAB System block, see “Call
Simulink Functions from MATLAB System Block” (Simulink).

To represent this behavior, a custom block is generated with one input, one output, and
one storage element. For more information about creating a custom entity storage block,
see “Delay Entities with a Custom Entity Storage Block” on page 9-11.

See the Code that Calls Simulink Function to Modify Entity Attributes
classdef CustomEntityStorageBlockSLFunc < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 % Delay
 Delay = 4;
 end

 methods (Access=protected)
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 function name = getSimulinkFunctionNamesImpl(obj)
 name = {'assignData'};
 end

 end

 Call Simulink Function from a MATLAB Discrete-Event System Block

9-75

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters the storage.
 entity.Attribute1 = assignData();
 coder.extrinsic('fprintf');
 fprintf('Entity Attribute Value: %f\n', entity.Attribute1);

 event = obj.eventForward('output', 1, obj.Delay);

 end

 end

end

Modify Entity Attributes
1 Define the name of the Simulink function to be called in the discrete-event System

object using the getSimulinkFunctionNamesImpl method.

 function name = getSimulinkFunctionNamesImpl(obj)
 % Declare the name of the Simulink Function.
 name = {'assignData'};
 end

The name of the Simulink function is declared as assignData.
2 Call assignData in the entry event action.

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Assign data when an entity enters the storage.
 entity.Attribute1 = assignData();
 coder.extrinsic('fprintf');
 fprintf('Entity Attribute Value: %f\n', entity.Attribute1);

 event = obj.eventForward('output', 1, obj.Delay);
 end

Build the Model
1 Create a model using an Entity Generator block, MATLAB Discrete-Event System

block, and an Entity Terminator block.
2 Open the MATLAB Discrete-Event System block, and set the Discrete-event System

object name to CustomEntityStorageBlockSLFunc.

9 Build Discrete-Event Systems Using System Objects

9-76

3 Output the Number of entities departed, d statistic from the Entity Generator
block and connect it to a scope.

4 Add a Simulink Function block to your model.

a On the Simulink Function block, double-click the function signature and enter y
= assignData() .

b In the Simulink Function block, add a Uniform Random Number block and
change its Sample time parameter to -1.

5 Simulate the model. The scope displays 3 entities departed the Entity Generator
block.

 Call Simulink Function from a MATLAB Discrete-Event System Block

9-77

6 The Diagnostic Viewer displays the random attribute values assigned to 3 entities
when they enter the storage.

See Also
entry | getEntityPortsImpl | getEntityStorageImpl | getEntityTypesImpl |
matlab.DiscreteEventSystem | matlab.System

More About
• “Delay Entities with a Custom Entity Storage Block” on page 9-11
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-17

9 Build Discrete-Event Systems Using System Objects

9-78

• “Create a Discrete-Event System Object” on page 9-58
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-65

 See Also

9-79

Resource Scheduling Using MATLAB Discrete-Event
System and Data Store Memory Blocks

This example shows how to model resource scheduling using data exchange between the
MATLAB Discrete-Event System block and the Data Store Memory block.

The example models a facility that generates two types of parts, Part A and Part B,
that undergo a heating process. Both parts acquire resources for the heating process
from the same resource pool. The resource acquisition for Part A has a higher priority.
When Part A acquires a certain number of resources, Part B can acquire only 1
resource. This constraint requires that the total number of resources be shared between
the processes and the acquisition scheduled based on the shared data.

Model Description

In the model, an Entity Generator Block generates entities of type PartA. The parts are
then sent to a storage unit to acquire resources from the Resource Pool block. A MATLAB
Discrete-Event System Block that uses the PartAStorage System Object™ represents
the storage unit.

The System Object™ defines the amount of acquired resources and the resource
acquisition event for Part A.

9 Build Discrete-Event Systems Using System Objects

9-80

function [entity,event] = PartAEntry(obj,storage,entity,source)
 % Define the amount of acquired resources as a random value.
 Amount = randi([1 3]);
 resReq = obj.resourceSpecification('Resources', Amount);
 % Define the resource acquisition event.
 event = obj.eventAcquireResource(resReq, 'ResourceAcq');
end

When Part A acquires the resources successfully, the entity is forwarded to the output.
TotalAcquiredByPartA is the data stored in the Data Store memory block representing
the total number of acquired resources by Part A. The System Object™ first calls the
value stored in Data Store A. It updates and writes the new TotalAcquiredByPartA
value by adding the number of acquired resources.

function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 global TotalAcquiredByPartA;
 % After succesful resource acquisition, forward the entity
 % to the output |1|.
 events = obj.eventForward('output', 1, obj.Delay);
 % Update the total number of resources acquired.
 TotalAcquiredByPartA = TotalAcquiredByPartA + resources.amount;
end

The part is sent to Heating Process A, which is represented by an Entity Server block.
When the heating process is complete, the parts release the acquired resources and
depart the facility.

In the model, another Entity Generator block generates entities of type Part B. The parts
are then sent to a storage unit to acquire resources from the Resource Pool block. A
MATLAB Discrete-Event System Block that uses the PartBStorage System Object™
represents the other storage unit.

The System Object™ defines the amount of acquired resources and the resource
acquisition event for Part B.

function [entity,event] = PartBEntry(obj,storage,entity,source)
 global TotalAcquiredByPartA;
 % If the number of resources acquired by Part A is greater than
 % 30 then Part B acquires only |1| resource.
 if TotalAcquiredByPartA > 30
 Amount = 1;
 else
 % Otherwise, Part B can acquire any number of resources between

 Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory Blocks

9-81

 % |1| and |5|.
 Amount = randi([1 5]);
 end
 resReq = obj.resourceSpecification('Resources', Amount);
 % Define the resurce acquisition event.
 event = obj.eventAcquireResource(resReq, 'ResourceAcq');
end

The amount of resources Part B acquires depends on the resources acquired by Part A.
This acquisition is achieved by PartBStorage System Object™ that reads the value of
TotalAcquiredByPartA stored in Data Store A for each entity entry.

After successfully acquiring the resources, the entity is forwarded to the output. The
System Object (TM) updates TotalAcquiredByPartB and writes its new value to Data
Store B.

function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 global TotalAcquiredByPartB; % After succesful resource
 acquisition, forward the entity to the output. events =
 obj.eventForward('output', 1, obj.Delay); % Update the total number
 of resources acquired. TotalAcquiredByPartB = TotalAcquiredByPartB
 + resources.amount;
end

Then the parts are sent to Heating Process B. They release the resources after the
process is complete and depart the facility.

Track Resources component in the model, tracks available resources and acquired
number of resources by each part. Available resources are measured by the Amount
available, avail statistic from the Resource Pool block. Resources acquired by Part A
and Part B is observed by the output of the Data Store Read blocks that read values
from Data Store A and Data Store B.

Simulation Results

Simulate the model. Observe the Scope block connected to the Data Store Read Part A.
The scope shows that Part A acquires 30 resources around the simulation time 40.

9 Build Discrete-Event Systems Using System Objects

9-82

Also observe the Scope block connected to Data Store Read Part B. The scope shows that
Part B acquires 1 resource after the simulation time 40 due to the prioritization of
resources.

 Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory Blocks

9-83

See Also

More About
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-75
• “Delay Entities with a Custom Entity Storage Block” on page 9-11
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-17

9 Build Discrete-Event Systems Using System Objects

9-84

• “Create a Discrete-Event System Object” on page 9-58

 See Also

9-85

Custom Visualization

• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2
• “Custom Visualization Example” on page 10-6
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-8

10

Use SimulationObserver Class to Monitor a SimEvents
Model

In this section...
“SimulationObserver Class” on page 10-2
“Custom Visualization Workflow” on page 10-2
“Create an Application” on page 10-3
“Use the Observer to Monitor the Model” on page 10-5
“Stop Simulation and Disconnect the Model” on page 10-5

SimulationObserver Class
To create an observer, create a class that derives from the
simevents.SimulationObserver object. You can use observers to:

• Help understand queue impact, visualize entities moving through the model during
simulation,

• Develop presentation tools showing model simulation via an application-oriented
interface, such as restaurant queue activity.

• Debug and examine entity activity.
• Examine queue contents.

The simevents.SimulationObserver object provides methods that let you:

• Create observer or animation objects.
• Identify model blocks for notification of run-time events.
• Interact with the event calendar.
• Perform activities when a model pauses, continues after pausing, and terminates.

SimEvents models call these functions during model simulation.

Custom Visualization Workflow
1 Create an application file.

10 Custom Visualization

10-2

a Define a class that inherits from the simevents.SimulationObserver class.
b Create an observer object that derives from this class.
c From the simevents.SimulationObserver methods, implement the functions

you want for your application. This application comprises your observer.
2 Open the model.
3 Create an instance of your class.
4 Run the model.

For more information about custom visualization, see “Create Custom Visualization”.

Create an Application
You can use these methods in your derived class implementation of
simevents.SimulationObserver.

Action Method
Specify behavior when simulation
starts.

simStarted

Specify behavior when simulation
pauses.

simPaused

Specify behavior when simulation
resumes.

simResumed

Define observer behavior when
simulation is terminating.

simTerminating

Specify list of blocks to be notified
of entity entry and exit events.

getBlocksToNotify

Specify whether you want
notification for all events in the
event calendar.

notifyEventCalendarEvents

Specify behavior after an entity
enters a block that has entity
storage.

postEntry

Specify behavior before an entity
exits a block with entity storage.

preExit

 Use SimulationObserver Class to Monitor a SimEvents Model

10-3

Action Method
Specify behavior before execution
of an event.

preExecute

Add block to list of blocks to be
notified.

addBlockNotification

Remove block from list of blocks
being notified.

removeBlockNotification

Get handles to event calendars. getEventCalendars
Get list of blocks that store
entities.

getAllBlockWithStorages

Return block handle for a given
block path.

getHandleToBlock

Return storage handles of
specified block.

getHandlesToBlockStorages

1 In the MATLAB Command Window, select New > Class.
2 In the first line of the file, inherit from the simevents.SimulationObserver class.

For example:

classdef seExampleRestaurantAnimator < simevents.SimulationObserver

seExampleRestaurantAnimator is the name of the new observer object.
3 In the properties section, enter the properties for your application.
4 In the methods section, implement the functions for your application.
5 To construct the observer object, enter a line like the following in the methods

section of the file:

function this = seExampleRestaurantAnimator
 % Constructor
 modelname = 'seExampleCustomVisualization';
 this@simevents.SimulationObserver(modelname);
 this.mModel = modelname;
 end

The matlabroot\toolbox\simevents\examples folder contains this application
example, seExampleRestaurantAnimator.m. This example uses an observer object to
implement an animator for the seExampleCustomVisualization model.

10 Custom Visualization

10-4

For more information, see Using Custom Visualization for Entities in the SimEvents
Examples tab.

Use the Observer to Monitor the Model
1 Open the model to observe.
2 At the MATLAB command prompt, to enable the animator for the model:

>> obj=seExampleRestaurantAnimator;

3 Simulate the model.

When the model starts, the animator is displayed in a figure window. As the model
runs, it makes calls into your application to see if you have implemented one of the
predefined set of functions. If your model does not contain a SimEvents block, you
receive an error.

Note As a result of the instrumentation to visualize the simulation, the simulation is
slower than without the instrumentation.

Stop Simulation and Disconnect the Model
1 Stop the simulation.
2 At the MATLAB command prompt, clear the animator from the model. For example:

clear obj;

See Also
simevents.SimulationObserver

Related Examples
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-8
• “Custom Visualization Example” on page 10-6
• “Visualization and Animation for Debugging” on page 5-14

 See Also

10-5

Custom Visualization Example

In this section...
“Structure of Example Model” on page 10-6
“Visualize Entities” on page 10-6

The Using Custom Visualization for Entities example visualizes a restaurant
layout with customer entities entering, dining, and leaving. It uses
seExampleCustomVisualization to model a restaurant. To observe the visualization,
start the model and the animator.

Structure of Example Model
The seExampleCustomVisualization model has these major components:

• The Entity Generator block (Patron Enter) generates entities representing customer
entities. Each customer has a TimeToDine amount of time to dine.

• These customer entities enter a waiting area, where a Resource Acquirer block
acquires a table for the customer.

• The Resource Pool block contains 10 table resources.
• When a table entity is available for a waiting customer entity, the Entity Server block

serves the customer for a TimeToDine amount of time.
• When a customer entity is done dining, the Resource Releaser block releases the table

resource back to the resource pool.
• The customer entity leaves the restaurant through the Entity Terminator block (Patron

Leave).

Visualize Entities
The seExampleRestaurantAnimator application animates the diners entering, dining,
and leaving the restaurant. The animator application draws a different colored dot for
each customer. As customers move through the restaurant, the application animates the
motion of the dots.

10 Custom Visualization

10-6

See Also
simevents.SimulationObserver

More About
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-8
• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2
• “Access Property Values” (MATLAB)
• “Visualization and Animation for Debugging” on page 5-14

 See Also

10-7

Observe Entities Using simevents.SimulationObserver
Class

This example shows how to use simevents.SimulationObserver object to count
entity departures and acquire departure timestamps.

Use the simevents.SimulationObserver object to observe or visualize entities, and
implement animators to debug model simulations. For more information, see “Use
SimulationObserver Class to Monitor a SimEvents Model” on page 10-2.

In this model, the simevents.SimulationObserver object is used to acquire the
number of entities departing a block or a set of blocks in the model and timestamp their
departures. The model has two Entity Generator and Entity Terminator blocks and an
Entity Server Block. The Scope blocks display the Number of entities departed, d
statistics for the Entity Generator and Entity Server blocks.

Create the Observer

Open a new script and initiate the simevents.SimulationObserver object by this
code.

10 Custom Visualization

10-8

classdef myObserverPreexit < simevents.SimulationObserver
 % Add the observer properties.
 properties
 Model
 % Initialize the property count.
 count
 end

properties (Constant, Access=private)
 increment = 1;
end

methods

 % Observe any model by incorporating its name to MyObserverPreexit.
 function this = myObserverPreexit(Model)
 % Input model name to the simulation observer.
 this@simevents.SimulationObserver(Model);
 this.Model = Model;
 end

 % Initialize the count in the simulation start.
 function simStarted(this)
 this.count = 0;
 end

 % Specify list of blocks to be notified of entity entry and exit
 % events.
 function Block = getBlocksToNotify(this)
 Block = this.getAllBlockWithStorages();
 end

 function preExit(this,evSrc,Data)
 % Get the names of all storage blocks that the entities depart.
 % This returns the block with its path.
 Block = Data.Block.BlockPath;
 % Remove the path to display only the
 % block name.
 Block = regexprep(Block,'ObserverPreexitModel/' ,'');
 % Initialize the blocks to observe.
 BlockName = 'Entity Server';
 % If the block that entity exits contains the block name
 % acquire data for exit time and block name.
 if contains(Block, BlockName)
 % Get time for entity preexit from event calendar.
 evCal = this.getEventCalendars;

 Observe Entities Using simevents.SimulationObserver Class

10-9

 Time = evCal(1).TimeNow;
 % Increase the count for departing entities.
 this.count = this.count + this.increment;

 myInfo = [' At time ',num2str(Time), ...
 ' an entity departs ', Block, ', Total entity count is ', ...
 num2str(this.count)];
 disp(myInfo);
 end
 end
 end
 end

Save the file as myObserverPreexit.m file.

Monitor the Model

Enable the observer object to monitor ObserverPreexitModel model.

obj = myObserverPreexit('ObserverPreexitModel');

The observer monitors the Entity Server block, which is determined by the BlockName
parameter in the observer file myObserverPreexit.m.

• Simulate the model. Click View Diagnostics on the model window and observe that
the number of entities departing the Entity Server block and the departure
timestamps.

• For validation, observe the Scope block that displays the Number of entities
departed, d statistic for the Entity Server block.

10 Custom Visualization

10-10

Monitor Multiple Blocks in the Model

Use the same observer to monitor the entity departures from all of the Entity Generator
blocks in your model.

• Change the BlockName parameter in the preExit method to 'Entity Generator'.
Entity Generator blocks in the model are labeled Entity Generator1 and Entity
Generator2.

function preExit(this,evSrc,Data)
 % Get the names of all storage blocks that the entities depart.
 % returns the block with its path.
 Block = Data.Block.BlockPath;
 % Remove the path to display only the block name
 Block = regexprep(Block,'ObserverPreexitModel/' ,'');
 % Initialize the common Entity Generator phrase
 BlockName = 'Entity Generator';

 Observe Entities Using simevents.SimulationObserver Class

10-11

 % If the block that the entity exits contains the block name
 % acquire the exit time and the block name.
 if contains(Block, BlockName)
 % Get the time of entity preexit from the event calendar.
 evCal = this.getEventCalendars;
 Time = evCal(1).TimeNow;
 % Increase the count of departing entities.
 this.count = this.count + this.increment;

 myInfo = [' At time ',num2str(Time), ...
 ' an entity departs ', Block, ', Total entity count is ', ...
 num2str(this.count)];
 disp(myInfo);
 end
end

• Enable the observer object to monitor ObserverPreexitModel model.

obj = myObserverPreexit('ObserverPreexitModel');

• Simulate the model. Observe the Diagnostic Viewer that displays the information for
15 entities departing from both Entity Generator blocks.

• For validation, observe Scope1 and Scope2 blocks display the Number of entities
departed, d statistic for the Entity Generator1 and the Entity Generator2.

Observe that 4 entities depart Entity Generator1.

10 Custom Visualization

10-12

Also, 11 entities depart Entity Generator2. In total, 15 entities departed from the Entity
Generator blocks in the model.

 Observe Entities Using simevents.SimulationObserver Class

10-13

See Also
getBlocksToNotify | getEventCalendars | preExit | simStarted |
simevents.SimulationObserver

More About
• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2
• “Visualization and Animation for Debugging” on page 5-14
• “Custom Visualization Example” on page 10-6

10 Custom Visualization

10-14

Migrating SimEvents Models

11

Migration Considerations
To take advantage of SimEvents features, migrate legacy SimEvents models (pre-R2016a).
Benefits include:

Event actions MATLAB Discrete-Event System
block

Discrete-Event Chart block

Entity multicast Domain transitions Simulink integration

Unified entity type Entity Batch Creator and
Splitter blocks

Sequence Viewer

Use SimEvents software to:

• Modify entity attributes, service, and routes on events such as entity generation, entry,
and exit.

• Create custom SimEvents blocks using MATLAB.

11 Migrating SimEvents Models

11-2

• Create Stateflow state transition diagrams that process entities, react to entity events,
and follow precise timing for temporal operations.

• Wirelessly broadcast copies of entities to multiple receive queues.
• Automatically switch between time-based and event-based signals.
• Use Simulink features, such as Fast Restart to speed up simulation runs and

Simulation Stepper to debug.
• Define entity types that are consistent across Simulink, Stateflow, and SimEvents

products.
• Create and split batch of entities.
• Display interchange of messages and entities.

When You Should Not Migrate
If your legacy model contains timeout blocks, do not migrate the model. You can still
access legacy blocks to continue developing older models by using the blocks in the
Legacy Block Library.

See Also

More About
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions for Legacy Models” on page 11-19
• “Observe Output” on page 11-29
• “Reactive Ports” on page 11-31

 See Also

11-3

matlab:simeventslib

Migration Workflow
This migration workflow helps you migrate legacy SimEvents models to R2016a or later.
In this workflow, you create a new SimEvents model to replace your legacy SimEvents
model. This is an iterative workflow that requires you to repeat some steps.

1 Before you start, copy your legacy model to a backup folder. Run the old model and
collect the results using the Simulation Data Inspector (“Inspect Simulation Data”
(Simulink)).

11 Migrating SimEvents Models

11-4

Note Pre-R2016a SimEvents blocks cannot coexist in a model with post-R2016a
SimEvents blocks.

2 Identify and redefine entity types (“Identify and Redefine Entity Types” on page 11-
7)

3 When possible, replace old blocks with new blocks (“Replace Old Blocks” on page 11-
9) and reconfigure the new blocks.

4 Write event actions for these instances:

a Replace Set Attribute blocks with event actions in other blocks (“Replace Set
Attribute Blocks with Event Actions” on page 11-19)

b Replace Get Attribute blocks with event actions in other blocks (“Connect Signal
Ports” on page 11-13)

c Replace Attribute Function blocks with event actions in other blocks (“Replace
Attribute Function Blocks with Event Actions” on page 11-23)

d Replace random number generators with event actions in other blocks (“Replace
Random Number Distributions in Event Actions” on page 11-21)

5 Replace reactive ports (see “If Connected to Reactive Ports” on page 11-16).
6 Determine a strategy to observe output by replacing Discrete Event Signal to

Workspace blocks with To Workspace blocks or logging (“Observe Output” on page
11-29).

7 Verify the results by running the simulation and using Simulation Data Inspector to
compare these results with those you collect in step 1.

See Also

More About
• “Migration Considerations” on page 11-2
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions for Legacy Models” on page 11-19
• “Observe Output” on page 11-29

 See Also

11-5

• “Reactive Ports” on page 11-31

11 Migrating SimEvents Models

11-6

Identify and Redefine Entity Types
Identify entity types in the legacy model and redefine them in the new model.

1 In the old model, identify all Entity Generator blocks that feed each Entity Sink block.
2 In the model, from the Display menu, select Signals & Ports > Port Data Types.
3 To see the attributes at each Entity Generator, Entity Sink, or other termination

points of entity flow, hover over the entity label to display attribute associated with
the entity. A popup window displays the attributes associated with the port.

Repeat this step for each block and note the attributes.
4 In the new model, add Entity Generator blocks to replace those in the legacy model.
5 In the model, in the Entity Generator block Entity type tab, define the entity type for

each block with the full list of attributes for that block (found in step 3).

This example shows the redefined attributes,

Once you define the entity types, return to “Migration Workflow” on page 11-4.

 Identify and Redefine Entity Types

11-7

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions for Legacy Models” on page 11-19
• “Observe Output” on page 11-29
• “Reactive Ports” on page 11-31

11 Migrating SimEvents Models

11-8

Replace Old Blocks
The primary goal in migration is to replace legacy SimEvents behavior with new
SimEvents behavior.

This table lists:

• New SimEvents blocks to replace legacy SimEvents blocks
• Actions to take when there is no equivalent new SimEvents block to replace the legacy

block. Some of these actions are also part of the migration workflow.

Old Block Action for New SimEvents Model
Attribute Function Wait until “Replace Attribute Function Blocks with Event

Actions” on page 11-23.
Attribute Scope Wait until “If Using Get Attribute Blocks to Observe Output”

on page 11-13.
Cancel Timeout Consider not yet migrating your model.
Conn Simulink Inport or Outport block.
Discrete Event Signal to
Workspace

Wait until “Observe Output” on page 11-29.

Enabled Gate Replace with Entity Gate.
Entity Combiner Replace with Composite Entity Creator.
Entity Departure Counter Wait until “Write Event Actions for Legacy Models” on page

11-19.
Entity Departure
Function-Call Generator

Wait until “Write Event Actions for Legacy Models” on page
11-19.

Entity Sink Replace with Entity Terminator.
Entity Splitter Replace with Composite Entity Splitter.
Entity Departure
Function-Call Generator

Wait until “Write Event Actions for Legacy Models” on page
11-19.

Event Filter Delete (block no longer needed).
Event to Timed Function-
Call

Delete (block no longer needed).

Event to Timed Signal Delete (block no longer needed).

 Replace Old Blocks

11-9

Old Block Action for New SimEvents Model
Event-Based Entity
Generator

Replace with Entity Generator.

Event-Based Random
Number

Wait until “Replace Random Number Distributions in Event
Actions” on page 11-21.

Event-Based Sequence Wait until “Write Event Actions for Legacy Models” on page
11-19.

FIFO Queue Replace with Entity Queue.
Get Attribute Wait until “Connect Signal Ports” on page 11-13.
Infinite Server Replace with Entity Server.
Initial Value Delete (block no longer needed).
Input Switch Replace with Entity Input Switch.
Instantaneous Entity
Counting Scope

Wait until “If Using Get Attribute Blocks to Observe Output”
on page 11-13.

Instantaneous Event
Counting Scope

Delete (block no longer needed).

LIFO Queue Replace with Entity Queue.
N-Server Replace with Entity Server.
Output Switch Replace with Entity Output Switch.
Path Combiner Input Switch (with All selected).
Priority Queue Replace with Entity Queue.
Read Timer For an example, see “Measure Point-to-Point Delays” on page

1-56.
Release Gate Replace with Entity Gate.
Replicate Replace with Entity Replicator.
Resource Acquire Replace with Resource Acquire.
Resource Pool Replace with Resource Pool.
Resource Release Replace with Resource Releaser.
Schedule Timeout Consider not yet migrating your model.
Set Attribute Wait until “Replace Set Attribute Blocks with Event Actions”

on page 11-19.

11 Migrating SimEvents Models

11-10

Old Block Action for New SimEvents Model
Signal Latch Delete (block no longer needed).
Signal Scope Replace with Simulink Scope.
Signal-Based Function-
Call Event Generator

Wait until “If Connected to Reactive Ports” on page 11-16.

Signal-Based Function-
Call Generator

Wait until “If Connected to Reactive Ports” on page 11-16.

Single Server Replace with Entity Server.
Start Timer For an example, see “Measure Point-to-Point Delays” on page

1-56.
Time-Based Entity
Generator

Replace with Entity Generator.

Time-Based function-Call
Generator

Replace with Entity Generator.

Timed to Event Function-
Call

Delete (block no longer needed).

Timed to Event Signal Delete (block no longer needed).
X-Y Attribute Scope See “If Connected to Computation Blocks” on page 11-14.
X-Y Signal Scope Simulink XY Graph.

When done, return to “Migration Workflow” on page 11-4.

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Connect Signal Ports” on page 11-13
• “Write Event Actions for Legacy Models” on page 11-19
• “Observe Output” on page 11-29

 See Also

11-11

• “Reactive Ports” on page 11-31

11 Migrating SimEvents Models

11-12

Connect Signal Ports
Previous releases use Get Attribute blocks to output the values of entity attributes.
SimEvents 5.0 is more closely tied to Simulink. This close association lets you use
traditional Simulink tools to get attribute values. Replace Get Attribute blocks using these
guidelines.

If Connected to Gateway Blocks
SimEvents models no longer require gateway blocks. Remove all gateway blocks, as
shown in the figure:

Return to “Connect Signal Ports” on page 11-13.

If Using Get Attribute Blocks to Observe Output
If you use Get Attribute blocks to observe output, see “Observe Output” on page 11-29.
For example, you can use the Simulation Data Inspector to visualize entities from an
Entity Generator block. This example shows how to visualize entities using the Simulation
Data Inspector, logging, and a scope.

 Connect Signal Ports

11-13

Return to “Connect Signal Ports” on page 11-13.

If Connected to Computation Blocks
If the Get Attribute block is connected to computational blocks, reproduce the behavior of
these blocks with Simulink Function blocks.

1 Place the computation blocks in a Simulink Function block.
2 Call the Simulink Function block from an event action.

This example places the Gain and Bias blocks in the Simulink Function block.

11 Migrating SimEvents Models

11-14

This table shows how each statistics port gets updated.

Statistics Port Updated on Event
Entry Exit Blocked Preempted

Number of entities
departed, d

Number of entities
in block, n

Number of entities
arrived, a

Pending entity
present in block,
pe

 Connect Signal Ports

11-15

Statistics Port Updated on Event
Entry Exit Blocked Preempted

Number of
pending entities,
np

Number of entities
preempted, p

Average
intergeneration
time, w

Average wait, w

Average queue
length, l

Utilization, util

Return to “Connect Signal Ports” on page 11-13.

If Connected to Reactive Ports
In previous releases, reactive ports are signal input ports that listen for updates or
changes in the input signal. When the input signal changes, an appropriate reaction
occurs in the block possessing the port. Convert all reactive port event signals to
messages, as in this example.

11 Migrating SimEvents Models

11-16

For more information, see “Reactive Ports” on page 11-31.

Return to “Connect Signal Ports” on page 11-13.

 Connect Signal Ports

11-17

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Write Event Actions for Legacy Models” on page 11-19
• “Observe Output” on page 11-29
• “Reactive Ports” on page 11-31

11 Migrating SimEvents Models

11-18

Write Event Actions for Legacy Models
When migrating legacy SimEvents models, you often must create event actions in these
instances:

• Setting attribute values
• Getting attribute values
• Generating random number generation
• Using Event sequences
• Replacing Attribute Function blocks
• Using Simulink signals in an event-based computation

Replace Set Attribute Blocks with Event Actions
Use these guidelines to replace Set Attribute blocks:

• If the Set Attribute blocks immediately follow entity generator blocks to initialize
attributes, in the Entity Generator block, code the Generate action on the Event
actions tab to set the attribute initial value. For example:

entitySys.id=5;
• If the Set Attribute blocks change attributes, in the Entity Generator block, code the

Create action on the Event actions tab.

This example illustrates the Generation action to initialize the attribute values:

 Write Event Actions for Legacy Models

11-19

Return to “Migration Workflow” on page 11-4.

Get Attribute Values
If you write event actions to get attribute values, use a Simulink Function block:

1 Place the computation block in a Simulink Function block.
2 Pass the attribute value as an argument from the event action to the Simulink

Function block.

11 Migrating SimEvents Models

11-20

Replace Random Number Distributions in Event Actions
You can generate random numbers using:

• “Random Number Distribution” on page 11-21
• “Example of Arbitrary Discrete Distribution Replacement” on page 11-21

Random Number Distribution

Replace Event-Based Random Number block random number distribution modes with
equivalent MATLAB code in event actions. For more information about generating random
distributions, see “Event Action Languages and Random Number Generation” on page 1-
5.

If you need additional random number distributions, see “Statistics and Machine Learning
Toolbox”.

Once you generate random numbers, return to “Migration Workflow” on page 11-4.

Example of Arbitrary Discrete Distribution Replacement

Here is an example of how to reproduce the arbitrary discrete distribution for the Event-
Based Random Number legacy block. Assume that the block has these parameter
settings:

• Distribution: Arbitrary discrete
• Value vector: [2 3 4 5 6]
• Probability vector: [0.3 0.3 0.1 0.2 0.1]
• Initial seed: 12234

As a general guideline:

1 Set the initial seed, for example:

persistent init
if isempty(init)
 rng(12234);
 init=true;
end

2 Determine what the value vector is assigned to in the legacy model and directly
assign it in the action code in the new model. In this example, the value vector is
assigned to the FinalStop.

 Write Event Actions for Legacy Models

11-21

3 To assign values within the appropriate range, calculate the cumulative probability
vector. For convenience, use the probability vector to calculate the cumulative
probably vector. For example, if the probability vector is:

[0.3 0.3 0.1 0.2 0.1]

The cumulative probability vector is:

[0.3 0.6 0.7 0.9 1]
4 Create a random variable to use in the code, for example:

x=rand();

Here is example code for this example block to calculate the distribution. The value
vector is assigned to FinalStop:
% Set initial seed.
persistent init
if isempty(init)
 rng(12234);
 init=true;
end
% Create random variable, x.
x=rand();
%
% Assign values within the appropriate range using the cumulative probability vector.
%
if x < 0.3
 entity.FinalStop=2;
elseif x >= 0.3 && x< 0.6
 entity.FinalStop=3;
elseif x >= 0.6 && x< 0.7
 entity.FinalStop=4;
elseif x >= 0.7 && x< 0.9
 entity.FinalStop=5;
else
 entity.FinalStop=6;
end

Once you generate random numbers, return to “Migration Workflow” on page 11-4.

Replace Event-Based Sequence Block with Event Actions
Replace Event-Based Sequence blocks, which generate a sequence of numbers from
specified column vectors, with event actions:

11 Migrating SimEvents Models

11-22

Replace Attribute Function Blocks with Event Actions
Replace Attribute Function blocks, which manipulate attributes using MATLAB code, with
event actions:

1 Copy the Attribute Function code, without the function syntax, to the Event actions
tab in the relevant event action.

2 To refer to the entity attribute, use the format entity.Attribute1.

For short or simple code, use constructs like these:

 Write Event Actions for Legacy Models

11-23

11 Migrating SimEvents Models

11-24

If you have longer or more complicated code, consider replacing the Attribute Function
block with a Simulink Function and copying the code without modification into the
Simulink Function block.

 Write Event Actions for Legacy Models

11-25

Return to “Migration Workflow” on page 11-4.

11 Migrating SimEvents Models

11-26

If Using Simulink Signals in an Event-Based Computation
If you are using Simulink signals in an event-based computation, send the signals to a
Simulink Function block.

1 Copy the event-based computation code to a Simulink Function block.
2 Send the Simulink signals as inputs to the Simulink Function block.

For example:

 Write Event Actions for Legacy Models

11-27

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Observe Output” on page 11-29
• “Reactive Ports” on page 11-31

11 Migrating SimEvents Models

11-28

Observe Output
Use these methods to observe output from your SimEvents model:

Items to Observe Visualization Tool
Statistics • Simulation Data Inspector

• Simulink To Workspace block
• Simulink Scope block
• Simulink Display block
• Simulink To File block
• Simulink Dashboard blocks

Entities passing through
model
Attributes

Count simultaneous
entities and messages

Simulation Data Inspector

Count simultaneous
events

Simulation Data Inspector — Each event is now a message
reactive port

Entities moving through
blocks in the model

Sequence Viewer

Entity animation Display > Message Animation
Step through Simulation Simulink Simulation Stepper
Custom animation SimEvents custom visualization API.

Return to “Migration Workflow” on page 11-4.

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13

 Observe Output

11-29

• “Write Event Actions for Legacy Models” on page 11-19
• “Reactive Ports” on page 11-31

11 Migrating SimEvents Models

11-30

Reactive Ports
In previous releases, reactive ports are signal input ports that listen for updates or
changes in the input signal. When the input signal changes, an appropriate reaction
occurs in the block possessing the port. Convert all reactive port event signals to
messages.

Here is an example of sending a message when data is less than or equal to 0.

Here is an example of sending messages on trigger edges (rising, falling, or either).

 Reactive Ports

11-31

Here is an example of sending messages based on value changes (rising, falling, or
either).

Here is a list of the reactive ports in SimEvents blocks and the action you can take for
them.

List of Reactive Ports

New Block with
Reactive Port

Reactive Port
Behavior

Action in New SimEvents Model

Entity Gate To open a gate on an
event

In enabled mode, send a message that carries a
positive value to the port on the Entity Gate
block.

In receive mode, send a message to advance one
entity for each message that arrives on the
control port.

Entity Input Switch

Entity Output Switch

Value change To select a new port, send a message to the
control port of the Entity Input Switch or Entity
Output Switch.

Entity Generator Message arrival Send a message to create an event-based entity.

Return to “Migration Workflow” on page 11-4

11 Migrating SimEvents Models

11-32

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions for Legacy Models” on page 11-19
• “Observe Output” on page 11-29

 See Also

11-33

Troubleshoot SimEvents Models

12

Debug SimEvents Models
A breakpoint is a point of interest in the simulation at which the debugger can suspend
the simulation.SimEvents Debugger allows you to inspect entities, set breakpoints based
on entities leaving or entering storage elements, and step to events.

To enable debugging for a SimEvents model, add the SimEvents Debugger block to the
model. When you click Step Forward in the Simulink Toolstrip, the SimEvents Debugger
displays.

The Explorer pane contains these nodes:

• Event calendar — Maintains a list of current and pending events for the model.
Select the Break before event execution check box to display event breakpoints on
the Breakpoints node.

• Breakpoints — Lists the breakpoints previously set for the model. You can view
breakpoints set for the block, on event calendar, and for watched entities.

12 Troubleshoot SimEvents Models

12-2

• Storage — Displays the entity inspector listing all the storage blocks in the model and
check boxes that let you select breakpoints. Blocks that contain entities are denoted
with .

To set breakpoints for post entry and pre-exit of entities, select the PostEntry Break
and PreExit Break check boxes.

• Entity Queue — Displays the entity inspector listing the entities and attributes
associated with that block.

SimEvents Debugger is used in the Tank Filling Station example to step through
the model simulation, to set breakpoints, and to explore the event calendar.

The SimEvents software also provides an API that helps you to create your own
visualization and debugging tools. For more information, see “Use SimulationObserver
Class to Monitor a SimEvents Model” on page 10-2.

Start the Debugger
1 Start Tank Filling Station.
2 Into the Simulink editor, add the SimEvents Debugger block at the top of the Tank

Filling Station model.
3 To start the debugger, in the Simulink editor toolstrip, click the Step Forward

button.

The debugger displays in a paused state.
4

To step to the next event, click .

Note You can also click Continue () to have the debugger continue the
simulation. However, doing so without setting breakpoints causes the simulation to
complete and the debugger to close.

5 The debugger pauses at the next event and displays it in the event calendar. The
current event is highlighted in green.

 Debug SimEvents Models

12-3

Step Through Model
1 To look at the current and scheduled events, click the Event calendar1 item. To set

breakpoints, you can select the Break before event execution check box. The
debugger hits the breakpoint before the next scheduled event. This breakpoint is for
any event type, including Forward, Generate, ServiceComplete, Gateway, Destroy,
and Trigger. Do not select this check box now.

12 Troubleshoot SimEvents Models

12-4

2 To inspect the attributes of an entity, click the Fill This Tank storage element in the
Explorer pane.

 Debug SimEvents Models

12-5

3 The Inspector pane shows a table with the entity sys.id. To track the entity as the
model simulates, click the associated check box.

4 To set breakpoints for when this entity enters and leaves the block, at the bottom of
the Inspector pane, select the two check boxes Break upon entity entry and
Break prior to entity exit.

Alternatively, to set the breakpoints on storage blocks all at once, click the Storage
item in the Explorer pane. Notice that the Fill This Tank block is highlighted
because it contains entities.

Select the PostEntry Break check boxes for the blocks you want in this table.
5

To progress to the next event, click .
6 Click Continue. Simulation continues until the next PostEntry or PreExit event.

12 Troubleshoot SimEvents Models

12-6

The block associated with the breakpoint is highlighted.
7 Step to the next event.

 Debug SimEvents Models

12-7

The next breakpoint at which the debugger stops is highlighted in the event calendar.
8 Continue the simulation.

12 Troubleshoot SimEvents Models

12-8

The simulation stops at the entity you opted to watch. As you continue the simulation
or step through the model, the debugger stops at the various breakpoints and
watchpoints that you set, letting you explore the model simulation.

9 To inspect the entities in a currently selected block in the model, select the block in
the model, then click the Inspect GCB button ().

The Inspector pane displays the current details of the entities in this block.

 Debug SimEvents Models

12-9

You can continue to set entity watchpoints and event breakpoints.

To list select blocks, events, or entities, type their names in the search boxes at the top of
the Explorer or Inspector panes.

The SimEvents software also provides a programmatic interface that lets you create your
own simulation observer or debugger. For more information, see “Create Custom
Visualization”.

See Also
SimEvents Debugger

12 Troubleshoot SimEvents Models

12-10

More About
• “Visualization and Animation for Debugging” on page 5-14
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-8
• “Event Calendar” on page 6-2
• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2

 See Also

12-11

